Publications by authors named "Lorena Gratino"

Antimicrobial peptides (AMPs) are considered an attractive generation of novel antibiotics due to their advantageous properties such as a broad spectrum of antimicrobial activity against pathogens, low cytotoxicity, and drug resistance. Although they have common structural features and it has been widely demonstrated that bacterial membranes represent the main target of the peptide activity, the exact mechanism underlying the membrane perturbation by AMPs is not fully understood. Nevertheless, all the proposed modes of action implicate the preliminary interaction of AMPs with the negatively charged lipids in bacterial membranes.

View Article and Find Full Text PDF

Antimicrobial activity of many AMPs can be improved by lysine-to-arginine substitution due to a more favourable interaction of arginine guanidinium moiety with bacterial membranes. In a previous work, the structural and functional characterization of an amphipathic antimicrobial peptide named RiLK1, including lysine and arginine as the positively charged amino acids in its sequence, was reported. Specifically, RiLK1 retained its β-sheet structure under a wide range of environmental conditions (temperature, pH, and ionic strength), and exhibited bactericidal activity against Gram-positive and Gram-negative bacteria and fungal pathogens with no evidence of toxicity on mammalian cells.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) is a fundamental antioxidant enzyme that neutralises superoxide ions, one of the main reactive oxygen species (ROS). Extremophile organisms possess enzymes that offer high stability and catalytic performances under a wide range of conditions, thus representing an exceptional source of biocatalysts useful for industrial processes. In this study, SODs from the thermo-halophilic (SOD) and the thermo-acidophilic (SOD) were heterologously expressed in transgenic tomato cell cultures.

View Article and Find Full Text PDF

Fresh fish are highly perishable, owing mainly to their moisture content, high amount of free amino acids and polyunsaturated fatty acids. Microorganisms and chemical reactions cause the spoilage, leading to loss in quality, human health risks and a market value reduction. Therefore, the fishing industry has always been willing to explore new technologies to increase quality and safety of fish products through a decrease of the microbiological and biochemical damage.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focused on a peptide called 1018-K6, testing its effectiveness against various pathogenic strains and their antibiotic resistance profiles.
  • * Results showed that 1018-K6 has a strong antimicrobial effect, with low concentrations effective in inhibiting growth and biofilm formation, suggesting potential uses in packaging and water disinfection.
View Article and Find Full Text PDF

Serine hydrolases play crucial roles in many physiological and pathophysiological processes and a panel of these enzymes are targets of approved drugs. Despite this, most of the human serine hydrolases remain poorly characterized with respect to their biological functions and substrates and only a limited number of in vivo active inhibitors have been so far identified. Acylpeptide hydrolase (APEH) is a member of the prolyl-oligopeptidase class, with a unique substrate specificity, that has been suggested to have a potential oncogenic role.

View Article and Find Full Text PDF

is a well-known and important medicinal plant, with a long history of traditional medicine use. Several studies showed that it contains many bioactive compounds with a wide range of pharmacological effects. In light of these past researches, were chosen to consider its potential antimicrobial action.

View Article and Find Full Text PDF

Bacteria isolated from different environments can be exploited for biocontrol purposes by the identification of the molecules involved in the antifungal activity. The present study was aimed at investigating antifungal protein compounds purified from a previously identified plant growth promoting bacterium, Pseudomonas protegens N isolated from agricultural land in northern Algeria. Therefore, a novel protein was purified by chromatographic and ultrafiltration steps and its antifungal activity together with growth-inhibition mechanism was evaluated against different fungi by plate-based assays.

View Article and Find Full Text PDF