Publications by authors named "Lorena Duret"

The dynamics of the genetic diversity of pathogens, including the emergence of lineages with increased fitness, is a foundational concept of disease ecology with key public-health implications. However, the identification of such lineages and estimation of associated fitness remain challenging, and is rarely done outside densely sampled systems. Here we present phylowave, a scalable approach that summarizes changes in population composition in phylogenetic trees, enabling the automatic detection of lineages based on shared fitness and evolutionary relationships.

View Article and Find Full Text PDF

Many pathogens continuously change their protein structure in response to immune-driven selection, resulting in weakened protection even in previously exposed individuals. In addition, for some pathogens, such as dengue virus, poorly targeted immunity is associated with increased risk of severe disease through a mechanism known as antibody-dependent enhancement. However, it remains unclear whether the antigenic distances between an individual's first infection and subsequent exposures dictate disease risk, explaining the observed large-scale differences in dengue hospitalizations across years.

View Article and Find Full Text PDF

Many pathogens continuously change their protein structure in response to immune-driven selection, resulting in weakened protection. In addition, for some pathogens such as dengue virus, poorly targeted immunity is associated with increased risk of severe disease, through a mechanism known as antibody-dependent enhancement. However, it remains a mystery whether the antigenic distance between an individual's first infection and subsequent exposures dictate disease risk, explaining the observed large-scale differences in dengue hospitalisations across years.

View Article and Find Full Text PDF

How host-associated microbial communities evolve as their hosts diversify remains equivocal: how conserved is their composition? What was the composition of ancestral microbiota? Do microbial taxa covary in abundance over millions of years? Multivariate phylogenetic models of trait evolution are key to answering similar questions for complex host phenotypes, yet they are not directly applicable to relative abundances, which usually characterize microbiota. Here, we extend these models in this context, thereby providing a powerful approach for estimating phylosymbiosis (the extent to which closely related host species harbor similar microbiota), ancestral microbiota composition, and integration (evolutionary covariations in bacterial abundances). We apply our model to the gut microbiota of mammals and birds.

View Article and Find Full Text PDF