Anemia during acute inflammation is not well described in the literature. We aimed to study whether patients develop a transient hemoglobin decrease during an acute attack of recurrent pericarditis. We retrospectively analyzed patients with recurrent pericarditis.
View Article and Find Full Text PDFAnemia and hyperferritinemia are frequent findings at diagnosis of Gaucher disease (GD). Macrophage-independent dyserythropoiesis and abnormal iron metabolism have been shown. We evaluated hematological and iron status at diagnosis (T0) and the effect of enzyme replacement therapy (ERT) on erythropoiesis and iron utilization over 5-year follow-up in type 1 GD patients and in an ex vivo model of erythropoiesis from CD34 + peripheral blood cells.
View Article and Find Full Text PDFNo published study has investigated the mitochondrial count in patients suffering from acute intermittent porphyria (AIP). In order to determine whether mitochondrial content can influence the pathogenesis of porphyria, we measured the mitochondrial DNA (mtDNA) copy number in the peripheral blood cells of 34 patients and 37 healthy individuals. We found that all AIP patients had a low number of mitochondria, likely as a result of a protective mechanism against an inherited heme synthesis deficiency.
View Article and Find Full Text PDFMutations in the ferroportin (FPN) gene SLC40A1 alter iron recycling and cause disturbances in iron homeostasis. The variants of TMPRSS6 contribute to the development of iron deficiencies. In this study, we determined the role of FPN and TMPRSS6 gene polymorphisms in the modulation of iron homeostasis based on biochemical parameters.
View Article and Find Full Text PDFCoronavirus Disease (COVID-19) can be considered as a human pathological model of inflammation combined with hypoxia. In this setting, both erythropoiesis and iron metabolism appear to be profoundly affected by inflammatory and hypoxic stimuli, which act in the opposite direction on hepcidin regulation. The impact of low blood oxygen levels on erythropoiesis and iron metabolism in the context of human hypoxic disease (e.
View Article and Find Full Text PDFPartial deficiency of the last enzyme of the heme biosynthetic pathway, namely, ferrochelatase (FECH), is responsible for erythropoietic protoporphyria (EPP) in humans. This disorder is characterized by painful skin photosensitivity, due to excessive protoporphyrin IX (PPIX) production in erythrocytes. Although several papers report the presence of iron deficiency anemia in about 50% of EPP patients, there is still no a conclusive explanation of the why this occurs.
View Article and Find Full Text PDFBackground: Acute intermittent porphyria (AIP) is caused by the haploinsufficiency of porphobilinogen deaminase (PBGD) enzymatic activity. Acute attacks occur in response to fasting, and alterations in glucose metabolism, insulin resistance, and mitochondrial turnover may be involved in AIP pathophysiology. Therefore, we investigated the metabolic pathways in PBGD-silenced hepatocytes and assessed the efficacy of an insulin mimic, α-lipoic acid (α-LA), as a potential therapeutic strategy.
View Article and Find Full Text PDFIn patients affected by Acute Respiratory Distress Syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD) and Coronavirus Disease 2019 (COVID-19), unclear mechanisms negatively interfere with the hematopoietic response to hypoxia. Although stimulated by physiological hypoxia, pulmonary hypoxic patients usually develop anemia, which may ultimately complicate the outcome. To characterize this non-adaptive response, we dissected the interplay among the redox state, iron regulation, and inflammation in patients challenged by either acute (ARDS and COVID-19) or chronic (COPD) hypoxia.
View Article and Find Full Text PDFThe homeostasis of tissues in a chronic disease is an essential function of the alternative pathway (AP) of the complement system (CS). However, if not controlled, it may also be detrimental to healthy cells with a consequent aggravation of symptoms. The protoporphyria (PP) is a rare chronic disease that causes phototoxicity in visible light with local skin pain and general malaise.
View Article and Find Full Text PDFMediterr J Hematol Infect Dis
November 2020
Phototoxic reaction is a known feature of EPP at least in part triggered by the oxidative status, complement system activation, and mast cell response. The aim of this study was to verify some aspects involved in phototoxic reaction during a season. The complement system was evaluated by C3 assay, alternative pathway by factor-B, and classical pathway by C1q; oxidative status was tested with malondialdehyde (MDA) and mast cell by IL-10 assay.
View Article and Find Full Text PDFIron overload (IO) is poorly investigated in the congenital haemolytic anaemias (CHAs), a heterogeneous group of rare inherited diseases encompassing abnormalities of the erythrocyte membrane and metabolism, and defects of the erythropoiesis. In this study we systematically evaluated routine iron parameters and cardiac and hepatic magnetic resonance imaging, together with erythropoietin, hepcidin, non-transferrin bound iron (NTBI), and cytokine serum levels in patients with different CHAs. We found that 40% of patients had a liver iron concentration (LIC) >4 mg Fe/g dry weight.
View Article and Find Full Text PDFBackground: Hereditary hemochromatosis, thalassemia and myelodysplastic syndromes represent disease models with evidence of iron-related heart failure. Non-Transferrin Bound Iron (NTBI) induces cardiac toxicity through the production of reactive oxygen species and lipid peroxidation. In ST-elevation acute myocardial infarction (STEMI) with evidence of microvascular obstruction (MVO) and hemorrhage (HEM), HEM may be a source of iron-related cardiac toxicity through NTBI and pro-inflammatory mediators.
View Article and Find Full Text PDFWe analyzed appearance of non transferrin bound iron (NTBI) in 30 transplant eligible patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) during conventional chemotherapy treatment program and evaluated possible relationship with transfusional body iron intake, iron parameters and clinical complications. For each course, serum samples for NTBI detection were taken prior to chemotherapy, during treatment and during subsequent bone marrow myelosuppression: NTBI was assessed by HPLC. Appearance of NTBI was observed from the start of induction treatment and was still detectable during bone marrow myelosuppression; the recovery of the bone marrow function coincided with the disappearance of NTBI.
View Article and Find Full Text PDFBackground: Friedreich ataxia is a rare disease caused by GAA-trinucleotide-repeat expansions in the frataxin gene, leading to marked reduction of qualitatively normal frataxin protein. Recently, human recombinant erythropoietin was reported to increase frataxin levels in patients with Friedreich ataxia.
Methods: We performed a 6-month, randomized placebo-controlled, double-blind, dose-response pilot trial to assess the safety and efficacy of erythropoietin in increasing frataxin levels.
To evaluate the association between fetal hemoglobin (HbF) levels and morbidity in β-thalassemia intermedia (TI), we analyzed data from 63 untransfused patients who had also never received HbF induction therapy. Patient records were reviewed for any history of 10 predefined morbidities. Laboratory measurements for markers of ineffective erythropoiesis were also obtained.
View Article and Find Full Text PDF