This study aimed to isolate and characterize native strains from the rhizospheric soil of plants to evaluate their potential as plant growth-promoting rhizobacteria (PGPR). A total of 22 bacterial isolates were obtained and subjected to various biochemical tests, as well as assessments of plant growth-promoting traits such as phosphate solubilization, hydrogen cyanide production, biocontrol properties through antibiosis, and indole acetic production. Genotypic analysis via 16S rRNA gene sequencing and phylogenetic tree construction identified the strains, with one particular strain named SM 33 showing significant growth-promoting effects on seedlings.
View Article and Find Full Text PDFInoculation with rhizobacteria and feeding by herbivores, two types of abiotic stress, have been shown to increase the production of secondary metabolites in plants as part of the defense response. This study explored the simultaneous effects of inoculation with GB03 (a PGPR species) and herbivory by third-instar larvae on essential oil (EO) yield and volatile organic compound (VOC) emissions in plants. The density of glandular trichomes was also examined, given that they are linked to EO production and VOC emission.
View Article and Find Full Text PDFSalinity inhibits plant growth by affecting physiological processes, but soil microorganisms like plant growth-promoting rhizobacteria (PGPR) can alleviate abiotic stress and enhance crop productivity. However, it should be noted that rhizobacteria employ different approaches to deal with salt stress conditions and successfully colonize roots. The objective of this study was to investigate the effect of salt stress on bacterial survival mechanisms such as mobility, biofilm formation, and the autoaggregation capacity of three plant growth-promoting strains: SJ04, WCS417r, and GB03.
View Article and Find Full Text PDFPhytopathogenic bacteria not only affect crop yield and quality but also the environment. Understanding the mechanisms involved in their survival is essential to develop new strategies to control plant disease. One such mechanism is the formation of biofilms; i.
View Article and Find Full Text PDFAs salt stress has a negative impact on plant growth and crop yield, it is very important to identify and develop any available biotechnology which can improve the salt tolerance of plants. Inoculation with plant-growth-promoting rhizobacteria (PGPR) is a proven environmentally friendly biotechnological resource for increasing the salt stress tolerance of plants and has a potential in-field application. In addition, bacterial volatile organic compounds (mVOCs) are signal molecules that may have beneficial roles in the soil-plant-microbiome ecosystem.
View Article and Find Full Text PDFSalinity is one of the causes that limit crop production. Plant Growth Promoting Rhizobacteria (PGPR) are beneficial soil bacteria that play a significant role in promoting plant growth. These microorganisms can produce their effect through the emission of Volatile Organic Compounds (VOCs).
View Article and Find Full Text PDFBackground: Plant growth-promoting rhizobacteria (PGPR) has a significant role in plant-insect interaction. However, the extent of their impact on insects is still not well understood. This investigation was designed to evaluate the role of inoculation with Bacillus amyloliquefaciens GB03 on sweet basil (Ocimum basilucum L.
View Article and Find Full Text PDFDrought is a major environmental stress factor that affects the growth and development of plants. All plants have to maintain the reactive oxygen species within certain levels for normal cellular homeostasis by means of their antioxidant systems, which can be classified as enzymatic and non-enzymatic. Plants under drought stress generate an excess production of reactive oxygen species.
View Article and Find Full Text PDFSecondary metabolites commonly play important physiological roles in plants and can be modified quantitatively and qualitatively by exposure to biotic and abiotic interactions. Plant growth promoting rhizobacteria (PGPR) and herbivory induce systemic resistance. In the present study, we analyzed the induction of secondary metabolites in peppermint plants in response to chewing insect herbivory on PGPR-inoculated Mentha piperita plants.
View Article and Find Full Text PDFThe effects of plant inoculation with plant growth-promoting rhizobacteria (PGPR) and those resulting from the exogenous application of salicylic acid (SA) or methyl jasmonte (MeJA) on total phenolic content (TPC) and monoterpenes in x plants were investigated. Although the PGPR inoculation response has been studied for many plant species, the combination of PGPR and exogenous phytohormones has not been investigated in aromatic plant species. The exogenous application of SA produced an increase in TPC that, in general, was of a similar level when applied alone as when combined with PGPR.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2019
Plant growth promoting bacteria (PGPB) are agriculturally important soil bacteria that increase plant growth. We subjected peppermint to inoculation with three species of PGPB. After inoculation, the plants were sprayed with methyl jasmonate solution (MeJA) or SA (salicylic acid).
View Article and Find Full Text PDFRhizobacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria, and this can stimulate plant growth either indirectly or directly. Volatile organic compounds (VOCs) emitted by rhizobacteria have the capacity to promote plant growth as well as perform biocontrol of fungal pathogens. The microbial volatile organic compounds (mVOCs) are characterized by a low molecular weight and a high vapor pressure, which facilitate evaporation and diffusion at normal temperatures and at above-ground and below-ground pressures.
View Article and Find Full Text PDFMany species or strains of the genus Pseudomonas have been characterized as plant growth promoting rhizobacteria (PGPR). We used a combination of phenotypic and genotypic techniques to analyze the community of fluorescent Pseudomonas strains in the rhizosphere of commercially grown Mentha piperita (peppermint). Biochemical techniques, Amplified rDNA Restriction Analysis (ARDRA), and 16S rRNA gene sequence analysis revealed that the majority of the isolated native fluorescent strains were P.
View Article and Find Full Text PDFPlant growth-promoting rhizobacteria (PGPR) generally exert their effects through enhancement of plant nutrient status and/or phytohormone production. The effects of PGPR on aromatic plant species are poorly known. We measured plant growth parameters, chlorophyll content, trichome density, stomatal density, and levels of secondary metabolites in peppermint (Mentha piperita) seedlings inoculated with PGPR strains Bacillus subtilis GB03, Pseudomonas fluorescens WCS417r, P.
View Article and Find Full Text PDF