J Environ Sci Health A Tox Hazard Subst Environ Eng
July 2016
Waste water from the wine industry is characterized by a high concentration of dissolved organic matter and the presence of natural phenolic compounds with low biodegradability. High concentrations of phenolic compounds may cause environmental pollution and risks to human health. In this article caffeic acid (CA) was used as a model compound of wine effluent because it is refractory to the conventional wastewater treatments.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
April 2015
Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile.
View Article and Find Full Text PDFNumerous volcanoes, hot springs, fumaroles, and geothermal wells occur in the Pacific region of Latin America. These systems are characterized by high As concentrations and other typical geothermal elements such as Li and B. This paper presents a review of the available data on As concentrations in geothermal systems and their surficial discharges and As data on volcanic gases of Latin America.
View Article and Find Full Text PDFMany regions of Latin America are widely reported for the occurrence of high arsenic (As) in groundwater and surface water due to a combination of geological processes and/or anthropogenic activities. In this paper, we review the available literature (both in English and Spanish languages) to delineate human As exposure pathways through the food chain. Numerous studies show that As accumulations in edible plants and crops are mainly associated with the presence of high As in soils and irrigation waters.
View Article and Find Full Text PDFThe global impact on public health of elevated arsenic (As) in water supplies is highlighted by an increasing number of countries worldwide reporting high As concentrations in drinking water. In Latin America, the problem of As contamination in water is known in 14 out of 20 countries: Argentina, Bolivia, Brazil, Chile, Colombia, Cuba, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Peru and Uruguay. Considering the 10 μg/L limit for As in drinking water established by international and several national agencies, the number of exposed people is estimated to be about 14 million.
View Article and Find Full Text PDFSmall-scale and household low-cost technologies to provide water free of arsenic for drinking purposes, suitable for isolated rural and periurban areas not connected to water networks in Latin America are described. Some of them are merely adaptation of conventional technologies already used at large and medium scale, but others are environmentally friendly emerging procedures that use local materials and resources of the affected zone. The technologies require simple and low-cost equipment that can be easily handled and maintained by the local population.
View Article and Find Full Text PDFIn this work, current information about the contamination of ground- and surface-water resources by arsenic from geogenic sources in Latin America is presented together with possible emerging mitigation solutions. The problem is of the same order of magnitude as other world regions, such as SE Asia, but it is often not described in English. Despite the studies undertaken by numerous local researchers, and the identification of proven treatment methods for the specific water conditions encountered, no technologies have been commercialized due to a current lack of funding and technical assistance.
View Article and Find Full Text PDFAn in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 microg L(-1).
View Article and Find Full Text PDFThe analysis for arsenic in hair is commonly used in epidemiological studies to assess exposure to this toxic element. However, poor correlation between total arsenic concentration in hair and water sources have been found in previous studies. Exclusive determination of endogenous arsenic in the hair, excluding external contamination has become an analytical challenge.
View Article and Find Full Text PDFLayered double hydroxides (LDHs) or hydrotalcite (HT)-like compounds with different kinds of metal ions (Mg-Al and Mg-Fe) in the brucite-like sheets were prepared and their adsorption properties were studied in the boron removal from aqueous solution under laboratory conditions. The hydrotalcites were synthesized by the coprecipitation method and were characterized by chemical analyses, X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR) and specific surface area measurements (BET). The affinity of these materials with a mixture of B(OH)(3) and B(OH)(4)(-) was studied as a function of contact time, initial pH of the solutions, HT quantity and B concentration (adsorption isotherms).
View Article and Find Full Text PDF