Publications by authors named "Lorena Bragg-Gonzalo"

During cerebral cortex development, excitatory pyramidal neurons (PNs) establish specific projection patterns while receiving inputs from GABAergic inhibitory interneurons (INs). Whether these inhibitory inputs can shape PNs' projection patterns is, however, unknown. While layer 4 (L4) PNs of the primary somatosensory (S1) cortex are all born as long-range callosal projection neurons (CPNs), most of them acquire local connectivity upon activity-dependent elimination of their interhemispheric axons during postnatal development.

View Article and Find Full Text PDF

Axons of the corpus callosum (CC) mediate the interhemispheric communication required for complex perception in mammals. In the somatosensory (SS) cortex, the CC exchanges inputs processed by the primary (S1) and secondary (S2) areas, which receive tactile and pain stimuli. During early postnatal life, a multistep process involving axonal navigation, growth, and refinement, leads to precise CC connectivity.

View Article and Find Full Text PDF

The corpus callosum (CC) connects the cerebral hemispheres and is the major mammalian commissural tract. It facilitates bilateral sensory integration and higher cognitive functions, and is often affected in neurodevelopmental diseases. Here, we review the mechanisms that contribute to the development of CC circuits in animal models and humans.

View Article and Find Full Text PDF