Florbetaben (FBB) is a radiopharmaceutical approved by the FDA and EMA in 2014 for the positron emission tomography (PET) imaging of brain amyloid deposition in patients with cognitive impairment who are being evaluated for Alzheimer's disease (AD) or other causes of cognitive decline. Initially, the clinical adoption of FBB PET faced significant barriers, including reimbursement challenges and uncertainties regarding its integration into diagnostic clinical practice. This review examines the progress made in overcoming these obstacles and describes the concurrent evolution of the diagnostic landscape.
View Article and Find Full Text PDFTopological networks lie at the heart of our cities and social milieu. However, it remains unclear how and when the brain processes topological structures to guide future behaviour during everyday life. Using fMRI in humans and a simulation of London (UK), here we show that, specifically when new streets are entered during navigation of the city, right posterior hippocampal activity indexes the change in the number of local topological connections available for future travel and right anterior hippocampal activity reflects global properties of the street entered.
View Article and Find Full Text PDFAccurate memory retrieval from partial or degraded input requires the reactivation of memory traces, a hippocampal mechanism termed pattern completion. Age-related changes in hippocampal integrity have been hypothesized to shift the balance of memory processes in favor of the retrieval of already stored information (pattern completion), to the detriment of encoding new events (pattern separation). Using a novel behavioral paradigm, we investigated the impact of cognitive aging (1) on recognition performance across different levels of stimulus completeness, and (2) on potential response biases.
View Article and Find Full Text PDFBackground: Despite decades of research on spatial memory, we know surprisingly little about how the brain guides navigation to goals. While some models argue that vectors are represented for navigational guidance, other models postulate that the future path is computed. Although the hippocampal formation has been implicated in processing spatial goal information, it remains unclear whether this region processes path- or vector-related information.
View Article and Find Full Text PDFBackground: The posterior parietal cortex (PPC) is thought to interact with the medial temporal lobe (MTL) to support spatial cognition and topographical memory. While the response of medial temporal lobe regions to topographical stimuli has been intensively studied, much less research has focused on the role of PPC and its functional connectivity with the medial temporal lobe.
Methodology/principle Findings: Here we report a dissociation between dorsal and ventral regions of PPC in response to different types of change in natural scenes using an fMRI adaptation paradigm.
Several recent models of medial temporal lobe (MTL) function have proposed that the parahippocampal cortex processes context information, the perirhinal cortex processes item information, and the hippocampus binds together items and contexts. While evidence for a clear functional distinction between the perirhinal cortex and other regions within the MTL has been well supported, it has been less clear whether such a dissociation exists between the hippocampus and parahippocampal cortex. In the current study, we use a novel approach applying a functional magnetic resonance imaging adaptation paradigm to address these issues.
View Article and Find Full Text PDF