Electrophysiologic methods have been used to investigate neural changes in individuals with poststroke aphasia. The major types of electrophysiologic measures include the event-related potential (ERP) and spectral power, and aspects of both (including amplitude, topography, and power) have been shown to differ in people with aphasia. Not only that, these measures are sensitive to spontaneous and treatment-induced language change.
View Article and Find Full Text PDFThe Rehabilitation Treatment Specification System (RTSS) was developed as a systematic way to describe rehabilitation treatments for the purpose of both research and practice. The RTSS groups treatments by type and describes them by 3 elements: the treatment (1) ingredients and (2) the mechanisms of action that yield changes in the (3) target behavior. Adopting the RTSS has the potential to improve consistency in research, allowing for better cross-study comparisons to strengthen the body of research supporting various treatments.
View Article and Find Full Text PDFA considerable body of research supports the use of behavioral communication treatment as the standard of care for aphasia. In spite of robust progress in clinical aphasiology, many questions regarding optimal care remain unanswered. One of the major challenges to progress in the field is the lack of a common framework to adequately describe individual treatments, which, if available, would allow comparisons across studies as well as improved communication among researchers, clinicians, and other stakeholders.
View Article and Find Full Text PDFBackground: Topological signal processing is a novel approach for decoding multiscale features of signals recorded through electroencephalography (EEG) based on topological data analysis (TDA). New method: We establish stability properties of the TDA descriptor persistence landscape (PL) in event-related potential (ERP) across multi-trial EEG signals, state algorithms for computing PL, and propose an exact inference framework on persistence and PLs.
Results: We apply the topological signal processing and inference framework to compare ERPs between individuals with post-stroke aphasia and healthy controls under a speech altered auditory feedback (AAF) paradigm.
Background: White matter disconnection of language-specific brain regions associates with worse aphasia recovery. Despite a loss of direct connections, many stroke survivors may maintain indirect connections between brain regions.
Objective: To determine (1) whether preserved direct connections between language-specific brain regions relate to better poststroke naming treatment outcomes compared to no direct connections and (2) whether for individuals with a loss of direct connections, preserved indirect connections are associated with better treatment outcomes compared to individuals with no connections.
Developing a clearer understanding of impairments that underlie the behavioral characteristics of aphasia is essential for the development of targeted treatments and will help inform theories of speech motor control. Impairments in sensorimotor integration of speech in individuals with conduction aphasia have previously been implicated in their repetition deficits. However, much less is known about the extent to which these integrative deficits occur outside of conduction aphasia and how this manifests behaviorally in areas other than speech repetition.
View Article and Find Full Text PDF