Biochim Biophys Acta Mol Cell Biol Lipids
December 2024
Vitamin A is an essential nutrient crucial to ensuring proper mammalian embryonic development. β-Carotene is the most prevalent form of vitamin A in food that, when transferred in its intact form from mother to the developing tissues, can serve as an in situ source of retinoic acid, the active form of vitamin A. We have previously provided evidence that the maternal-fetal transfer of β-carotene across the placenta is mediated by lipoproteins and that β-carotene itself regulates placenta lipoprotein biogenesis by means of its derivatives β-apo-10'-carotenoids and retinoic acid.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
September 2023
In the maternal circulation, apoB-containing low-density lipoproteins (LDL) and apoA1-containing high-density lipoproteins (HDL) transport lipids. The production of lipoproteins in the placenta has been suggested, but the directionality of release has not been resolved. We compared apolipoprotein concentrations and size-exclusion chromatography elution profiles of lipoproteins in maternal/fetal circulations, and in umbilical arteries/veins; identified placental lipoprotein-producing cells; and studied temporal induction of lipoprotein-synthesizing machinery during pregnancy.
View Article and Find Full Text PDFAmong drug-induced adverse events, pancreatitis is life-threatening and results in substantial morbidity. A prototype example is the pancreatitis caused by asparaginase, a crucial drug used to treat acute lymphoblastic leukemia (ALL). Here, we used a systems approach to identify the factors affecting asparaginase-associated pancreatitis (AAP).
View Article and Find Full Text PDFThis Perspective discusses how retinol catalyzes resonance energy transfer (RET) reactions pivotally important for mitochondrial energy homeostasis by protein kinase C δ (PKCδ). PKCδ signals to the pyruvate dehydrogenase complex, controlling oxidative phosphorylation. The PKCδ-retinol complex reversibly responds to the redox potential of cytochrome c, that changes with the electron transfer chain workload.
View Article and Find Full Text PDFDietary β-carotene is the most abundant vitamin A precursor. Once absorbed by the enterocytes, the provitamin A carotenoid can either be cleaved into retinoids (vitamin A and its derivatives) or incorporated in its intact form within chylomicrons to be distributed throughout the body for utilization and/or storage by other tissues. From the liver, together with endogenous lipids, intact β-carotene can also be incorporated within very low-density lipoprotein/low-density lipoprotein (VLDL/LDL) for transport to other tissues and organs.
View Article and Find Full Text PDFRegulation of the pyruvate dehydrogenase (PDH) complex by the pyruvate dehydrogenase kinase PDK4 enables the heart to respond to fluctuations in energy demands and substrate availability. Retinoic acid, the transcriptionally active form of vitamin A, is known to be involved in the regulation of cardiac function and growth during embryogenesis as well as under pathological conditions. Whether retinoic acid also maintains cardiac health under physiological conditions is unknown.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
May 2022
Vitamin A deficiency (VAD) results in intestinal inflammation, increased redox stress and reactive oxygen species (ROS) levels, imbalanced inflammatory and immunomodulatory cytokines, compromised barrier function, and perturbations of the gut microbiome. To combat VAD dietary interventions with β-carotene, the most abundant precursor of vitamin A, are recommended. However, the impact of β-carotene on intestinal health during VAD has not been fully clarified, especially regarding the VAD-associated intestinal dysbiosis.
View Article and Find Full Text PDFWhile the current national prevalence rate of vitamin A deficiency (VAD) is estimated to be less than 1%, it is suggested that it varies between different ethnic groups and races within the U.S. We assessed the prevalence of VAD in pregnant women of different ethnic groups and tested these prevalence rates for associations with the vitamin A-related single nucleotide polymorphism (SNP) allele frequencies in each ethnic group.
View Article and Find Full Text PDFLecithin:retinol acyltransferase and retinol-binding protein enable vitamin A (VA) storage and transport, respectively, maintaining tissue homeostasis of retinoids (VA derivatives). The precarious VA status of the lecithin:retinol acyltransferase-deficient (Lrat) retinol-binding protein-deficient (Rbp) mice rapidly deteriorates upon dietary VA restriction, leading to signs of severe vitamin A deficiency (VAD). As retinoids impact gut morphology and functions, VAD is often linked to intestinal pathological conditions and microbial dysbiosis.
View Article and Find Full Text PDFObjective: Transformation of white into brown fat ("browning") reduces obesity in many preclinical models and holds great promise as a therapeutic concept in metabolic disease. Vitamin A metabolites (retinoids) have been linked to thermogenic programming of adipose tissue; however, the physiologic importance of systemic retinoid transport for adipose tissue browning and adaptive thermogenesis is unknown.
Methods: We performed cold exposure studies in mice and humans and used a genetic model of defective vitamin A transport, the retinol binding protein deficient (Rbp) mouse, to study the effects of cooling on systemic vitamin A and the relevance of intact retinoid transport on cold-induced adipose tissue browning.
STRA6 (stimulated by retinoic acid 6) is a 75kDa polytopic transmembrane protein that facilitates cellular retinol uptake from retinol-binding protein (RBP). Structural characterization of STRA6 from Danio rerio purified in detergent and reconstituted in amphipol A8-35 was achieved by single-particle cryo-electron microscopy (cryo-EM). This provided the first high-resolution snapshot of this protein, showing a novel topology of a tightly assembled homodimer, and an unexpected physiological association with calmodulin in addition to insights into its potential mechanism of function.
View Article and Find Full Text PDFThe placenta, a hallmark of mammalian embryogenesis, allows nutrients to be exchanged between the mother and the fetus. Vitamin A (VA), an essential nutrient, cannot be synthesized by the embryo, and must be acquired from the maternal circulation through the placenta. Our understanding of how this transfer is accomplished is still in its infancy.
View Article and Find Full Text PDFBackground: Cytochrome P450 1b1 (Cyp1b1) deletion and dietary retinol deficiency during pregnancy (GVAD) affect perinatal liver functions regulated by Srebp. Cyp1b1 is not expressed in perinatal liver but appears in the E9.5 embryo, close to sites of retinoic acid (RA) signaling.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
November 2020
Vitamin A is an essential nutrient, critical for proper embryonic development in mammals. Both embryonic vitamin A-deficiency or -excess lead to congenital malformations or lethality in mammals, including humans. This is due to the defective transcriptional action of retinoic acid, the active form of vitamin A, that regulates in a spatial- and temporal-dependent manner the expression of genes essential for organogenesis.
View Article and Find Full Text PDFBackground As breastfeeding awareness and social acceptance are increased, maternal nutritional deficiency requires more investigation. Methods A prospective cohort study was conducted to determine if vitamin A deficiency is more common in pregnant, lactating post-bariatric surgery women in an inner city population. Antepartum, women after bariatric surgery and controls with no history of malabsorption were recruited.
View Article and Find Full Text PDFVitamin A deficiency is still a public health concern affecting millions of pregnant women and children. Retinoic acid, the active form of vitamin A, is critical for proper mammalian embryonic development. Embryos can generate retinoic acid from maternal circulating β-carotene upon oxidation of retinaldehyde produced via the symmetric cleavage enzyme β-carotene 15,15'-oxygenase (BCO1).
View Article and Find Full Text PDFApocarotenoids are cleavage products of C40 isoprenoid pigments, named carotenoids, synthesized exclusively by plants and microorganisms. The colors of flowers and fruits and the photosynthetic process are examples of the biological properties conferred by carotenoids to these organisms. Mammals do not synthesize carotenoids but obtain them from foods of plant origin.
View Article and Find Full Text PDFArch Biochem Biophys
June 2018
It is now widely accepted that nutrition during critical periods in early development, both pre- and postnatal, may have lifetime consequences in determining health or onset of major diseases in the adult life. Dietary carotenoids have shown beneficial health effects throughout the life cycle due to their potential antioxidant properties, their ability to serves as precursors of vitamin A and to the emerging signaling functions of their metabolites. The non-provitamin A carotenoids lutein and zeaxanthin are emerging as important modulators of infant and child visual and cognitive development, as well as critical effectors in the prevention and treatment of morbidity associated with premature births.
View Article and Find Full Text PDFVitamin A regulates many essential mammalian biological processes, including embryonic development. β-carotene is the main source of vitamin A in the human diet. Once ingested, it is packaged into lipoproteins, predominantly low-density lipoproteins (LDL), and transported to different sites within the body, including the liver and developing tissues, where it can either be stored or metabolized to retinoids (vitamin A and its derivatives).
View Article and Find Full Text PDFVitamin A homeostasis is critical to normal cellular function. Retinol-binding protein (RBP) is the sole specific carrier in the bloodstream for hydrophobic retinol, the main form in which vitamin A is transported. The integral membrane receptor STRA6 mediates cellular uptake of vitamin A by recognizing RBP-retinol to trigger release and internalization of retinol.
View Article and Find Full Text PDFβ-Carotene is an important source of vitamin A for the mammalian embryo, which depends on its adequate supply to achieve proper organogenesis. In mammalian tissues, β-carotene 15,15'-oxygenase (BCO1) converts β-carotene to retinaldehyde, which is then oxidized to retinoic acid, the biologically active form of vitamin A that acts as a transcription factor ligand to regulate gene expression. β-Carotene can also be cleaved by β-carotene 9',10'-oxygenase (BCO2) to form β-apo-10'-carotenal, a precursor of retinoic acid and a transcriptional regulator per se The mammalian embryo obtains β-carotene from the maternal circulation.
View Article and Find Full Text PDFWe previously defined that the mitochondria-localized PKCδ signaling complex stimulates the conversion of pyruvate to acetyl-coenzyme A by the pyruvate dehydrogenase complex. We demonstrated in vitro and ex vivo that retinol supplementation enhances ATP synthesis in the presence of the PKCδ signalosome. Here, we tested in vivo if a persistent oversupply of retinol would further impair glucose metabolism in a mouse model of diet-induced insulin resistance.
View Article and Find Full Text PDFHepatobiliary Surg Nutr
August 2015
Background: Maternal alcohol exposure and adult alcohol intake have been shown to perturb the metabolism of various micro- and macro-nutrients, including vitamin A and its derivatives (retinoids). Therefore, it has been hypothesized that the well-known detrimental consequences of alcohol consumption may be due to deregulations of the metabolism of such nutrients rather than to a direct effect of alcohol. Alcohol exposure in utero also has long-term harmful consequences on the health of the offspring with mechanisms that have not been fully clarified.
View Article and Find Full Text PDF