Publications by authors named "Loredana D'Este"

The neurotoxin 1-methyl, 4-phenyl, 1, 2, 3, 6-tetrahydropiridine (MPTP) is widely used to produce experimental parkinsonism. Such a disease is characterized by neuronal damage in multiple regions beyond the nigrostriatal pathway including the spinal cord. The neurotoxin MPTP damages spinal motor neurons.

View Article and Find Full Text PDF

The neurotoxin 1-methyl,4-phenyl-1,2,3,6-tetrahydropiridine (MPTP) is widely used to produce experimental parkinsonism in rodents and primates. Among different administration protocols, continuous or chronic exposure to small amounts of MPTP is reported to better mimic cell pathology reminiscent of Parkinson's disease (PD). Catecholamine neurons are the most sensitive to MPTP neurotoxicity; however, recent studies have found that MPTP alters the fine anatomy of the spinal cord including motor neurons, thus overlapping again with the spinal cord involvement documented in PD.

View Article and Find Full Text PDF

Alpha synuclein (α-syn) is a 140 amino acid vertebrate-specific protein, highly expressed in the human nervous system and abnormally accumulated in Parkinson's disease and other neurodegenerative disorders, known as synucleinopathies. The common occurrence of α-syn aggregates suggested a role for α-syn in these disorders, although its biological activity remains poorly understood. Given the high degree of sequence similarity between vertebrate α-syns, we investigated this proteins in the central nervous system (CNS) of the common carp, Cyprinus carpio, with the aim of comparing its anatomical and cellular distribution with that of mammalian α-syn.

View Article and Find Full Text PDF

The neurobiology of non-motor symptoms in Parkinson's disease (PD) reveals a number of unexpected areas which once were not recognized a priori as part of the neuropathology underlying PD. These areas may belong either to central nervous system or periphery. Among central areas major efforts in the last decade led to recognize a number of brain nuclei as part of the disease spreading or disease onset in PD patients.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) include a large variety of disorders that affects specific areas of the centralnervous system, leading to psychiatric and movement pathologies. A common feature that characterizes thesedisorders is the neuronal formation and accumulation of misfolded protein aggregates that lead to cell death. Inparticular, different proteinaceous aggregates accumulate to trigger a variety of clinical manifestations: prionprotein (PrPSc) in prion diseases, β-amyloid (Aβ) in Alzheimer's disease (AD), α-synuclein in Parkinson's disease(PD), huntingtin in Huntington's disease (HD), superoxide dismutase and TDP-43 in amyotrophic lateral sclerosis(ALS), tau in tauopathies.

View Article and Find Full Text PDF

Cholinergic structures in the arm of the cephalopod Octopus vulgaris were studied by immunohistochemistry using specific antisera for two types (common and peripheral) of acetylcholine synthetic enzyme choline acetyltransferase (ChAT): antiserum raised against the rat common type ChAT (cChAT), which is cross-reactive with molluscan cChAT, and antiserum raised against the rat peripheral type ChAT (pChAT), which has been used to delineate peripheral cholinergic structures in vertebrates, but not previously in invertebrates. Western blot analysis of octopus extracts revealed a single pChAT-positive band, suggesting that pChAT antiserum is cross-reactive with an octopus counterpart of rat pChAT. In immunohistochemistry, only neuronal structures of the octopus arm were stained by cChAT and pChAT antisera, although the pattern of distribution clearly differed between the two antisera.

View Article and Find Full Text PDF

1-Methyl, 4-phenyl, 1,2,3,6-tetrahydropiridine (MPTP) is a neurotoxin, widely used to produce experimental models of Parkinson Disease in rodents and primates. Although dopaminergic neurons are the most sensitive to MPTP neurotoxicity, different neuronal subtypes are affected. Among these, recent studies indicate that MPTP may produce pathological effects on spinal neurons.

View Article and Find Full Text PDF

The involvement of the spinal cord in parkinsonism is becoming more and more evident based on human autopsies and on experimental models, obtained using specific neurotoxins or genetic manipulations. Besides Parkinson disease, other degenerative disorders characterized by parkinsonism, involve the spinal cord, and multiple neurotransmitters, apart dopamine, are altered in parkinsonism, also in their spinal projections. In the present review we discuss spinal cord pathology of different genetic or toxic experimental models of parkinsonism, as well as the neuropathological reports from autoptic cases of sporadic Parkinson disease and of other neurodegenerative conditions, overlapping with parkinsonism.

View Article and Find Full Text PDF

Immunohistochemical techniques were used to study the distribution of cholinergic neurons containing choline acetyltransferase of the common type (cChAT), the synthetic enzyme of acetylcholine, in the central nervous system of the slug Limax maximus and Limax valentianus. Because the antiserum applied here was raised against a recombinant protein encoded by exons 7 and 8 of the rat gene for ChAT, three methods were used in order to validate antibody specificity for the Limax counterpart enzyme. Western blot combined with ChAT activity assay following native gel electrophoresis and immunoprecipitation analysis both indicated that immunoreactive Limax brain molecules were capable of synthesizing acetylcholine.

View Article and Find Full Text PDF

Previous studies suggest that behavioral consequences of heroin treatment depend on the drug history of the animals and that cholinergic neurotransmission is involved in both behavioral and motor sensitization induced by heroin and other drugs of abuse. Immunohistochemistry, using a recently developed antiserum, specific for choline acetyl-transferase of the common type (cChAT), was applied to four different groups of rats, differing in drug regimens. Two groups of rats were submitted to the same schedule of heroin sensitization and then challenged for vehicle or heroin before sacrifice, obtaining two distinct groups, namely heroin-vehicle (HV) and heroin-heroin (HH).

View Article and Find Full Text PDF

This study provides the first immunohistochemical evidence visualizing cholinergic octopus neurons containing choline acetyltransferase (ChAT), the synthetic enzyme of acetylcholine. Because the antiserum applied here was raised against a recombinant protein encoded by exons 7 and 8 of the rat gene for ChAT, and initially used for studies in mammals, to validate antibody specificity for the octopus counterpart enzyme we therefore used three methods. Immunoprecipitation using Pansorbin indicated that immunoreactive octopus brain molecules were capable of synthesizing acetylcholine.

View Article and Find Full Text PDF

This study investigated possible neurochemical differences in the brain of two inbred mouse strains, C57BL/6J (C57) and DBA/2J (DBA) that in behavioral, memorization and learning tasks under normal and experimental conditions perform differently or often in an opposite manner. The immunohistochemical study, designed to investigate the dopaminergic system, identified many differences within the midbrain A10 area and less marked differences in areas A9 and A8. The number of dopamine transporter (DAT), vesicular monoamine transporter of type 2 (VMT) and tyrosine hydroxylase (TH) immunoreactive cell bodies was significantly higher in the midbrain of DBA mice than in C57 mice (on average +21.

View Article and Find Full Text PDF

Immunohistochemical distribution patterns of neuropeptide FF (NPFF) and neuropeptide tyrosine (NPY) were studied in the brain of rats submitted to two different protocols of heroin treatment. In drug-naive rats, acutely injected heroin significantly depleted NPFF-immunoreactive material within the neurons of the nucleus of solitary tract (NTS), significantly decreased the density of NPFF-immunoreactive nerve fibers within the median eminence, pituitary stalk, and neurohypophysis, and markedly increased NPY-immunoreactive neurons and nerve fibers in the thalamic paraventricular nucleus and bed nucleus of stria terminalis. In drug-sensitized rats, heroin significantly increased the number and immunostaining intensity of the NPFF-immunoreactive neurons within the NTS and induced minor changes in the NPFF-immunoreactive nerve fiber network of the median eminence, pituitary stalk, and neurohypophysis and a relatively minor increase in NPY neurons in the thalamic paraventricular nucleus and bed nucleus of stria terminalis.

View Article and Find Full Text PDF

The peptide guanylin, first isolated from rat small intestine, is involved in the regulation of water-electrolyte transport between the intracellular and extracellular compartments of the epithelia. The main sites of guanylin expression are the intestinal, airway, or exocrine gland ductal epithelia where guanylin acts in a paracrine/luminocrine fashion. Because guanylin also circulates in the blood, sources of this peptide were sought in endocrine glands.

View Article and Find Full Text PDF

D-Ala(2)-deltorphin I (DADTI) is a heptapeptide amide first extracted from frog skin that displays a high selectivity and affinity for delta opioid receptors. Previous studies using a polyclonal antiserum specific for its C-terminal tetrapeptide-amide (DVVG) have already described in rat and mouse brain the presence of immunoreactive neurons, most of them belonging to the mesencephalic dopaminergic neurons. C57BL/6J (C57) and DBA/2J (DBA) are two inbred strains of mice well known for showing marked genotype-dependent differences for phenotypes related to differential brain dopamine functioning.

View Article and Find Full Text PDF

Immunohistochemistry was used to map the induction of c-Fos protein in the forebrain of rats treated with heroin. Acute injection of heroin to drug-naive rats caused significant induction of c-Fos protein in the nucleus accumbens shell, whereas the same dose of heroin given to drug-sensitized rats significantly increased c-Fos immunoreactivity in the dorsomedial caudate-putamen. These results show that the heroin-induced pattern of c-Fos protein in the rat striatum differs according to the rat's drug history.

View Article and Find Full Text PDF