Laboratory automation deals with eliminating manual tasks in high-throughput protocols. It therefore plays a crucial role in allowing fast and reliable synthetic biology. However, implementing open-source automation solutions often demands experimental scientists to possess scripting skills, and even when they do, there is no standardized toolkit available for their use.
View Article and Find Full Text PDFThe engineering of pre-defined functions in living cells requires increasingly accurate tools as synthetic biology efforts become more ambitious. Moreover, the characterization of the phenotypic performance of genetic constructs demands meticulous measurements and extensive data acquisition for the sake of feeding mathematical models and matching predictions along the design-build-test lifecycle. Here, we developed a genetic tool that eases high-throughput transposon insertion sequencing (TnSeq): the pBLAM1-x plasmid vectors carrying the Himar1 Mariner transposase system.
View Article and Find Full Text PDFWe present a potential mechanism for emergence of catalytic activity that is essential for survival, from a non-catalytic protein fold. The type B dihydrofolate reductase (DfrB) family of enzymes were first identified in pathogenic bacteria because their dihydrofolate reductase activity is sufficient to provide trimethoprim (TMP) resistance. DfrB enzymes are described as poorly evolved as a result of their unusual structural and kinetic features.
View Article and Find Full Text PDFEngineering studies of lipase A (CalA) have demonstrated the potential of this enzyme in the selective hydrolysis of fatty acid esters of different chain lengths. CalA has been shown to bind substrates preferentially through an acyl-chain binding tunnel accessed via the hydrolytic active site; it has also been shown that selectivity for substrates of longer or shorter chain length can be tuned, for instance by modulating steric hindrance within the tunnel. Here we demonstrate that, whereas the tunnel region is certainly of paramount importance for substrate recognition, residues in distal regions of the enzyme can also modulate substrate selectivity.
View Article and Find Full Text PDFThe SEVA platform (https://seva-plasmids.com) was launched one decade ago, both as a database (DB) and as a physical repository of plasmid vectors for genetic analysis and engineering of Gram-negative bacteria with a structure and nomenclature that follows a strict, fixed architecture of functional DNA segments. While the current update keeps the basic features of earlier versions, the platform has been upgraded not only with many more ready-to-use plasmids but also with features that expand the range of target species, harmonize DNA assembly methods and enable new applications.
View Article and Find Full Text PDFEnzyme engineering allows to explore sequence diversity in search for new properties. The scientific literature is populated with methods to create enzyme libraries for engineering purposes, however, choosing a suitable method for the creation of mutant libraries can be daunting, in particular for the novices. Here, we address both novices and experts: how can one enter the arena of enzyme library design and what guidelines can advanced users apply to select strategies best suited to their purpose? Section I is dedicated to the novices and presents an overview of established and standard methods for library creation, as well as available commercial solutions.
View Article and Find Full Text PDFSulfahydantoin-based molecules may provide a means to counteract antibiotic resistance, which is on the rise. These molecules may act as inhibitors of β-lactamase enzymes, which are key in some resistance mechanisms. In this paper, we report on the synthesis of 6 novel sulfahydantoin derivatives by the key reaction of chlorosulfonyl isocyanate to form α-amino acid derived sulfamides, and their cyclization into sulfahydantoins.
View Article and Find Full Text PDFThe evolution of new protein functions is dependent upon inherent biophysical features of proteins. Whereas, it has been shown that changes in protein dynamics can occur in the course of directed molecular evolution trajectories and contribute to new function, it is not known whether varying protein dynamics modify the course of evolution. We investigate this question using three related ß-lactamases displaying dynamics that differ broadly at the slow timescale that corresponds to catalytic turnover yet have similar fast dynamics, thermal stability, catalytic, and substrate recognition profiles.
View Article and Find Full Text PDFThrough the application of a region-focused saturation mutagenesis and randomization approach, protein engineering of the Cal-A enzyme was undertaken with the goal of conferring new triglyceride selectivity. Little is known about the mode of triglyceride binding to Cal-A. Engineering Cal-A thus requires a systemic approach.
View Article and Find Full Text PDFWhole-genome sequencing of trimethoprim-resistant clinical isolates identified a member of the trimethoprim-resistant type II dihydrofolate reductase gene family (). The gene was located within a class I integron flanked by multiple resistance genes. This arrangement was previously reported in a 130.
View Article and Find Full Text PDFTardigrades are microscopic organisms renowned for their ability to survive extreme environmental conditions. Tardigrade extreme-tolerance research has centered on the ability to withstand desiccation, low and high temperatures, and high hydrostatic pressure and radiation levels. Tardigrade tolerance to hypergravity, however, has yet to be described.
View Article and Find Full Text PDFUnderstanding the molecular determinants of enzyme performance is of primary importance for the rational design of ad hoc mutants. A novel approach, which combines efficient conformational sampling and quick reactivity scoring, is used here to shed light on how substrate oxidation was improved during the directed evolution experiment of a fungal laccase (from Pycnoporus cinnabarinus), an industrially relevant class of oxidoreductases. It is found that the enhanced activity of the evolved enzyme is mainly the result of substrate arrangement in the active site, with no important change in the redox potential of the T1 copper.
View Article and Find Full Text PDF