Publications by authors named "Lore Thaler"

Recent work suggests that the adult human brain is very adaptable when it comes to sensory processing. In this context, it has also been suggested that structural "blueprints" may fundamentally constrain neuroplastic change, e.g.

View Article and Find Full Text PDF

Click-based echolocation can support mobility and orientation in people with vision impairments (VI) when used alongside other mobility methods. Only a small number of people with VI use click-based echolocation. Previous research about echolocation addresses the skill of echolocation to understand how echolocation works, and its brain basis.

View Article and Find Full Text PDF

It is clear that people can learn a new sensory skill-a new way of mapping sensory inputs onto world states. It remains unclear how flexibly a new sensory skill can become embedded in multisensory perception and decision-making. To address this, we trained typically sighted participants (N = 12) to use a new echo-like auditory cue to distance in a virtual world, together with a noisy visual cue.

View Article and Find Full Text PDF

In the investigation of the brain areas involved in human spatial navigation, the traditional focus has been on visually guided navigation in sighted people. Consequently, it is unclear whether the involved areas also support navigational abilities in other modalities. We explored this possibility by testing whether the occipital place area (OPA), a region associated with visual boundary-based navigation in sighted people, has a similar role in echo-acoustically guided navigation in blind human echolocators.

View Article and Find Full Text PDF

Here, we report novel empirical results from a psychophysical experiment in which we tested the echolocation abilities of nine blind adult human experts in click-based echolocation. We found that they had better acuity in localizing a target and used lower intensity emissions (i.e.

View Article and Find Full Text PDF

What factors are important in the calibration of mental representations of auditory space? A substantial body of research investigating the audiospatial abilities of people who are blind has shown that visual experience might be an important factor for accurate performance in some audiospatial tasks. Yet, it has also been shown that long-term experience using click-based echolocation might play a similar role, with blind expert echolocators demonstrating auditory localization abilities that are superior to those of people who are blind and who do not use click-based echolocation by Vercillo et al. (Neuropsychologia 67: 35-40, 2015).

View Article and Find Full Text PDF

Understanding the factors that determine if a person can successfully learn a novel sensory skill is essential for understanding how the brain adapts to change, and for providing rehabilitative support for people with sensory loss. We report a training study investigating the effects of blindness and age on the learning of a complex auditory skill: click-based echolocation. Blind and sighted participants of various ages (21-79 yrs; median blind: 45 yrs; median sighted: 26 yrs) trained in 20 sessions over the course of 10 weeks in various practical and virtual navigation tasks.

View Article and Find Full Text PDF
Perceptual constancy with a novel sensory skill.

J Exp Psychol Hum Percept Perform

February 2021

Making sense of the world requires perceptual constancy-the stable perception of an object across changes in one's sensation of it. To investigate whether constancy is intrinsic to perception, we tested whether humans can learn a form of constancy that is unique to a novel sensory skill (here, the perception of objects through click-based echolocation). Participants judged whether two echoes were different either because: (a) the clicks were different, or (b) the objects were different.

View Article and Find Full Text PDF

The human brain may use recent sensory experience to create sensory templates that are then compared to incoming sensory input, that is, "knowing what to listen for." This can lead to greater perceptual sensitivity, as long as the relevant properties of the target stimulus can be reliably estimated from past sensory experiences. Echolocation is an auditory skill probably best understood in bats, but humans can also echolocate.

View Article and Find Full Text PDF

The functional specializations of cortical sensory areas were traditionally viewed as being tied to specific modalities. A radically different emerging view is that the brain is organized by task rather than sensory modality, but it has not yet been shown that this applies to primary sensory cortices. Here, we report such evidence by showing that primary 'visual' cortex can be adapted to map spatial locations of sound in blind humans who regularly perceive space through sound echoes.

View Article and Find Full Text PDF

People use sensory, in particular visual, information to guide actions such as walking around obstacles, grasping or reaching. However, it is presently unclear how malleable the sensorimotor system is. The present study investigated this by measuring how click-based echolocation may be used to avoid obstacles while walking.

View Article and Find Full Text PDF

Cue combination occurs when two independent noisy perceptual estimates are merged together as a weighted average, creating a unified estimate that is more precise than either single estimate alone. Surprisingly, this effect has not been demonstrated compellingly in children under the age of 10 years, in contrast with the array of other multisensory skills that children show even in infancy. Instead, across a wide variety of studies, precision with both cues is no better than the best single cue - and sometimes worse.

View Article and Find Full Text PDF

Some people who are blind have trained themselves in echolocation using mouth clicks. Here, we provide the first report of psychophysical and clicking data during echolocation of distance from a group of 8 blind people with experience in mouth click-based echolocation (daily use for > 3 years). We found that experienced echolocators can detect changes in distance of 3 cm at a reference distance of 50 cm, and a change of 7 cm at a reference distance of 150 cm, regardless of object size (i.

View Article and Find Full Text PDF

Humans are effective at dealing with noisy, probabilistic information in familiar settings. One hallmark of this is Bayesian Cue Combination: combining multiple noisy estimates to increase precision beyond the best single estimate, taking into account their reliabilities. Here we show that adults also combine a novel audio cue to distance, akin to human echolocation, with a visual cue.

View Article and Find Full Text PDF

Patients with injury to early visual cortex or its inputs can display the Riddoch phenomenon: preserved awareness for moving but not stationary stimuli. We provide a detailed case report of a patient with the Riddoch phenomenon, MC. MC has extensive bilateral lesions to occipitotemporal cortex that include most early visual cortex and complete blindness in visual field perimetry testing with static targets.

View Article and Find Full Text PDF

Echolocation is the ability to use sound-echoes to infer spatial information about the environment. Some blind people have developed extraordinary proficiency in echolocation using mouth-clicks. The first step of human biosonar is the transmission (mouth click) and subsequent reception of the resultant sound through the ear.

View Article and Find Full Text PDF
Echolocation in humans: an overview.

Wiley Interdiscip Rev Cogn Sci

November 2016

Bats and dolphins are known for their ability to use echolocation. They emit bursts of sounds and listen to the echoes that bounce back to detect the objects in their environment. What is not as well-known is that some blind people have learned to do the same thing, making mouth clicks, for example, and using the returning echoes from those clicks to sense obstacles and objects of interest in their surroundings.

View Article and Find Full Text PDF

Echolocation is the ability to use reflected sound to obtain information about the spatial environment. Echolocation is an active process that requires both the production of the emission as well as the sensory processing of the resultant sound. Appreciating the general usefulness of echo-acoustic cues for people, in particular those with vision impairments, various devices have been built that exploit the principle of echolocation to obtain and provide information about the environment.

View Article and Find Full Text PDF

It is still an open question if the auditory system, similar to the visual system, processes auditory motion independently from other aspects of spatial hearing, such as static location. Here, we report psychophysical data from a patient (female, 42 and 44 years old at the time of two testing sessions), who suffered a bilateral occipital infarction over 12 years earlier, and who has extensive damage in the occipital lobe bilaterally, extending into inferior posterior temporal cortex bilaterally and into right parietal cortex. We measured the patient's spatial hearing ability to discriminate static location, detect motion and perceive motion direction in both central (straight ahead), and right and left peripheral auditory space (50° to the left and right of straight ahead).

View Article and Find Full Text PDF

Echolocation can be used by blind and sighted humans to navigate their environment. The current study investigated the neural activity underlying processing of path direction during walking. Brain activity was measured with fMRI in three blind echolocation experts, and three blind and three sighted novices.

View Article and Find Full Text PDF

Some blind humans use sound to navigate by emitting mouth-clicks and listening to the echoes that reflect from silent objects and surfaces in their surroundings. These echoes contain information about the size, shape, location, and material properties of objects. Here we present results from an fMRI experiment that investigated the neural activity underlying the processing of materials through echolocation.

View Article and Find Full Text PDF

Some blind humans make clicking noises with their mouth and use the reflected echoes to perceive objects and surfaces. This technique can operate as a crude substitute for vision, allowing human echolocators to perceive silent, distal objects. Here, we tested if echolocation would, like vision, show size constancy.

View Article and Find Full Text PDF

Similar to certain bats and dolphins, some blind humans can use sound echoes to perceive their silent surroundings. By producing an auditory signal (e.g.

View Article and Find Full Text PDF

The ability of humans to echolocate has been recognized since the 1940s. Little is known about what determines individual differences in echolocation ability, however. Although hearing ability has been suggested as an important factor in blind people and sighted-trained echolocators, there is evidence to suggest that this may not be the case for sighted novices.

View Article and Find Full Text PDF

Some people can echolocate by making sonar emissions (e.g., mouth-clicks, finger snaps, feet shuffling, humming, cane tapping, etc.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionffuceochd95as24hfel49s67ag0lc5r2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once