Publications by authors named "Lora McGuinness"

Article Synopsis
  • - The study investigates the microbial communities along the human respiratory tract, revealing that changes in these communities could affect respiratory diseases, but there's limited research at the species level.
  • - Samples from five participants were collected from different respiratory sites, and sequencing was performed to identify and quantify the bacterial species present; nearly 3,600 species were detected, with 95% of them entering the lungs passively from the outside.
  • - Although most bacteria in the lungs are not colonizing, over 100 species were found to be more abundant in lung samples compared to other sites, with specific bacteria like Veillonella dispar showing potential importance for lung health.
View Article and Find Full Text PDF

Arctic soils store vast amounts of carbon and are subject to intense climate change. While the effects of thaw on the composition and activities of Arctic tundra microorganisms has been examined extensively, little is known about the consequences of temperature fluctuations within the subzero range in seasonally frozen or permafrost soils. This study identified tundra soil bacteria active at subzero temperatures using stable isotope probing (SIP).

View Article and Find Full Text PDF

Polychlorinated dibenzo--dioxins (PCDDs) are released into the environment from a variety of both anthropogenic and natural sources. While highly chlorinated dibenzo--dioxins are persistent under oxic conditions, in anoxic environments, these organohalogens can be reductively dechlorinated to less chlorinated compounds that are then more amenable to subsequent aerobic degradation. Identifying the microorganisms responsible for dechlorination is an important step in developing bioremediation approaches.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are common organic contaminants found in anoxic environments. The capacity for PAH biodegradation in unimpacted environments, however, has been understudied. Here we investigate the enrichment, selection, and sustainability of a microbial community from a pristine environment on naphthalene as the only amended carbon source.

View Article and Find Full Text PDF

DNA stable isotope probing (SIP) was used to track the uptake of organic and inorganic carbon sources for TACK archaea (Thaumarchaeota/Aigarchaeota/Crenarchaeota/Korarchaeota) on a cruise of opportunity in the North Atlantic. Due to water limitations, duplicate samples from the deep photic (60-115 m), the mesopelagic zones (local oxygen minimum; 215-835 m) and the bathypelagic zone (2085-2835 m) were amended with various combinations of 12C- or 13C-acetate/urea/bicarbonate to assess cellular carbon acquisition. The SIP results indicated the majority of TACK archaeal operational taxonomic units (OTUs) incorporated 13C from acetate and/or urea into newly synthesized DNA within 48 h.

View Article and Find Full Text PDF

Background: An approach utilizing the long-read capability of the Oxford Nanopore MinION to rapidly sequence bacterial ribosomal operons of complex natural communities was developed. Microbial fingerprinting employs domain-specific forward primers (16S rRNA subunit), reverse primers (23S rRNA subunit), and a high-fidelity Taq polymerase with proofreading capabilities. Amplicons contained both ribosomal subunits for broad-based phylogenetic assignment (~ 3900 bp of sequence), plus the intergenic spacer (ITS) region (~ 300 bp) for potential strain-specific identification.

View Article and Find Full Text PDF
Article Synopsis
  • The study compares two methods for extracting bacterial DNA from horse feces: a modified phenol/chloroform method with an inhibitor removal solution (C3) and the PowerFecal® DNA Isolation Kit (MoBio-K).
  • Results showed that the phenol/chloroform method produced 100 times more DNA with less shearing, while MoBio-K yielded higher relative abundance of Bacteroidetes.
  • Although the phenol/chloroform method provided greater evenness in bacterial distribution and less variability, safety concerns arise due to the handling of hazardous chemicals.
View Article and Find Full Text PDF

Background: The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet.

Methods: Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups.

View Article and Find Full Text PDF

The widespread use of methyl tert-butyl ether (MTBE) has caused major contamination of groundwater sources and is a concern due to its taste and odor problems, as well as its toxicity. MTBE can be degraded anaerobically which makes bioremediation of contaminated aquifers a potential solution. Nevertheless, the organisms and mechanisms that are responsible for anaerobic MTBE degradation are still unknown.

View Article and Find Full Text PDF

This report describes BioDry (patent pending), a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc.

View Article and Find Full Text PDF

Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this study, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate.

View Article and Find Full Text PDF

Anaerobic aniline biodegradation was investigated under different electron-accepting conditions using contaminated canal and groundwater aquifer sediments from an industrial site. Aniline loss was observed in nitrate- and sulfate-amended microcosms and in microcosms established to promote methanogenic conditions. Lag times of 37 days (sulfate amended) to more than 100 days (methanogenic) were observed prior to activity.

View Article and Find Full Text PDF

The Department of Energy's Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect.

View Article and Find Full Text PDF

Mesophilic Crenarchaeota (also known as Thaumarchaeota) are ubiquitous and abundant in marine habitats. However, very little is known about their metabolic function in situ. In this study, salt marsh sediments from New Jersey were screened via stable isotope probing (SIP) for heterotrophy by amending with a single (13)C-labeled compound (acetate, glycine or urea) or a complex (13)C-biopolymer (lipids, proteins or growth medium (ISOGRO)).

View Article and Find Full Text PDF

Microbial metabolic activity occurs at subzero temperatures in permafrost, an environment representing ∼25% of the global soil organic matter. Although much of the observed subzero microbial activity may be due to basal metabolism or macromolecular repair, there is also ample evidence for cellular growth. Unfortunately, most metabolic measurements or culture-based laboratory experiments cannot elucidate the specific microorganisms responsible for metabolic activities in native permafrost, nor, can bulk approaches determine whether different members of the microbial community modulate their responses as a function of changing subzero temperatures.

View Article and Find Full Text PDF

Previous experiments at the Rifle, Colorado Integrated Field Research Challenge (IFRC) site demonstrated that field-scale addition of acetate to groundwater reduced the ambient soluble uranium concentration. In this report, sediment samples collected before and after acetate field addition were used to assess the active microbes via (13)C acetate stable isotope probing on 3 phases [coarse sand, fines (8-approximately 150 μm), groundwater (0.2-8 μm)] over a 24-day time frame.

View Article and Find Full Text PDF

2,4,6-Trinitrotoluene ((15)N or (13)C labeled) was added to Norfolk Harbor sediments to test whether anaerobic bacteria use TNT for growth. Stable-isotope probing (SIP)-terminal restriction fragment length polymorphism (TRFLP) detected peaks in the [(15)N]TNT cultures (60, 163, and 168 bp). The 60-bp peak was also present in the [(13)C]TNT cultures and was related to Lysobacter taiwanensis.

View Article and Find Full Text PDF

Sandy or permeable sediment deposits cover the majority of the shallow ocean seafloor, and yet the associated bacterial communities remain poorly described. The objective of this study was to expand the characterization of bacterial community diversity in permeable sediment impacted by advective pore water exchange and to assess effects of spatial, temporal, hydrodynamic, and geochemical gradients. Terminal restriction fragment length polymorphism (TRFLP) was used to analyze nearly 100 sediment samples collected from two northeastern Gulf of Mexico subtidal sites that primarily differed in their hydrodynamic conditions.

View Article and Find Full Text PDF

Bioreactors hold great promise for treating graywater in an advanced life support system for space applications. However, questions remain regarding the reproducibility and reliability of biological systems for long-term use. Although there have been numerous studies on ground-based biological systems, most studies focus on a single reactor or a simple (single carbon) waste stream.

View Article and Find Full Text PDF