The Protein Data Bank in Europe (PDBe), a founding member of the Worldwide Protein Data Bank (wwPDB), actively participates in the deposition, curation, validation, archiving and dissemination of macromolecular structure data. PDBe supports diverse research communities in their use of macromolecular structures by enriching the PDB data and by providing advanced tools and services for effective data access, visualization and analysis. This paper details the enrichment of data at PDBe, including mapping of RNA structures to Rfam, and identification of molecules that act as cofactors.
View Article and Find Full Text PDFThis letter announces that PDBx/mmCIF format files will become mandatory for crystallographic depositions to the Protein Data Bank (PDB).
View Article and Find Full Text PDFThe Worldwide PDB recently launched a deposition, biocuration, and validation tool: OneDep. At various stages of OneDep data processing, validation reports for three-dimensional structures of biological macromolecules are produced. These reports are based on recommendations of expert task forces representing crystallography, nuclear magnetic resonance, and cryoelectron microscopy communities.
View Article and Find Full Text PDFThe Protein Data Bank in Europe (PDBe, pdbe.org) is actively engaged in the deposition, annotation, remediation, enrichment and dissemination of macromolecular structure data. This paper describes new developments and improvements at PDBe addressing three challenging areas: data enrichment, data dissemination and functional reusability.
View Article and Find Full Text PDFOneDep, a unified system for deposition, biocuration, and validation of experimentally determined structures of biological macromolecules to the PDB archive, has been developed as a global collaboration by the worldwide PDB (wwPDB) partners. This new system was designed to ensure that the wwPDB could meet the evolving archiving requirements of the scientific community over the coming decades. OneDep unifies deposition, biocuration, and validation pipelines across all wwPDB, EMDB, and BMRB deposition sites with improved focus on data quality and completeness in these archives, while supporting growth in the number of depositions and increases in their average size and complexity.
View Article and Find Full Text PDFThe Protein Data Bank in Europe (http://pdbe.org) accepts and annotates depositions of macromolecular structure data in the PDB and EMDB archives and enriches, integrates and disseminates structural information in a variety of ways. The PDBe website has been redesigned based on an analysis of user requirements, and now offers intuitive access to improved and value-added macromolecular structure information.
View Article and Find Full Text PDFBoth metabolism and transport are key elements defining the bioavailability and biological activity of molecules, i.e. their adverse and therapeutic effects.
View Article and Find Full Text PDFChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.
View Article and Find Full Text PDFCancer remains a fundamental burden to public health despite substantial efforts aimed at developing effective chemotherapeutics and significant advances in chemotherapeutic regimens. The major challenge in anti-cancer drug design is to selectively target cancer cells with high specificity. Research into treating malignancies by targeting altered metabolism in cancer cells is supported by computational approaches, which can take a leading role in identifying candidate targets for anti-cancer therapy as well as assist in the discovery and optimisation of anti-cancer agents.
View Article and Find Full Text PDFThe use of spherical harmonics in the molecular sciences is widespread. They have been employed with success in, for instance, the crystallographic fast rotation function, small-angle scattering particle reconstruction, molecular surface visualisation, protein-protein docking, active site analysis and protein function prediction. An extension of the spherical harmonic expansion method is presented here that enables regions (bodies) rather than contours (surfaces) to be described and which lends itself favourably to the construction of rotationally invariant shape descriptors.
View Article and Find Full Text PDF