Publications by authors named "Lora J Rogers"

Modulation of T cell activity is an effective strategy for the treatment of autoimmune diseases, immune-related disorders and cancer. This highlights a critical need for the identification of proteins that regulate T cell function. The kinase DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is emerging as a potent regulator of the immune system, spurring interest in its use as a therapeutic target.

View Article and Find Full Text PDF

Background: Studies showed that folate and related single nucleotide polymorphisms (SNPs) could predict prostate cancer (PCa) risk. However, little is known about the interactions of folate-related SNPs associated with PCa aggressiveness. The study's objective is to evaluate SNP-SNP interactions among the DHFR 19-bp polymorphism and 10 SNPs in folate metabolism and the one-carbon metabolism pathway associated with PCa aggressiveness.

View Article and Find Full Text PDF

Breast cancer patients diagnosed with HR+/HER2- tumors face a persistent risk of distant recurrence long after completion of their treatment. Strategies to induce anti-tumor immune responses could complement standard-of-care therapies for these patients. The current study was performed to examine the feasibility, safety and immunogenicity of adding P10s-PADRE to standard-of-care chemotherapy in HR+/HER2- early-stage breast cancer patients.

View Article and Find Full Text PDF

Both arsenic and cadmium are reported to be toxic to humans. The use of saliva as a biomarker of low-level exposures to these elements has not been adequately explored, and the putative relationship between exposure and obesity is unclear. This cross-sectional study aims to investigate the relationship between salivary arsenic and cadmium concentrations and their association with obesity.

View Article and Find Full Text PDF

Immune response to a given antigen, particularly in cancer patients, is complex and is controlled by various genetic and environmental factors. Identifying biomarkers that can predict robust response to immunization is an urgent need in clinical cancer vaccine development. Given the involvement of DNA methylation in the development of lymphocytes, tumorigenicity and tumor progression, we aimed to analyze pre-vaccination DNA methylation profiles of peripheral blood mononuclear cells (PBMCs) from breast cancer subjects vaccinated with a novel peptide-based vaccine referred to as P10s-PADRE.

View Article and Find Full Text PDF

Background: Physical activity has been identified as a modifiable risk factor for breast cancer. Varying definitions of physical activity have made the evaluation difficult to analyze. In a state with high prevalence of obesity and elevated rates of breast cancer incidence and mortality, physical activity may be an important element for risk reduction.

View Article and Find Full Text PDF

Our pilot study examined global DNA methylation and telomere length (TL) using DNA from saliva samples provided by 39 participants in the Arkansas Rural Community Health (ARCH) Study. TL was quantified by qPCR, and DNA methylation and DNA methylation age was assessed using the Illumina 850K Epic BeadChip. Ingenuity Pathway Analysis (IPA) was performed to identify biological pathways that were DM between residents of counties with high or low poverty rates and by race [African American descent (AA) versus European American (EA) descent].

View Article and Find Full Text PDF

The transporter associated with antigen processing 2 (TAP2) is involved in the development of multidrug resistance and the etiology of immunological diseases. In this study, we investigated whether the expression of TAP2 can be perturbed by single nucleotide polymorphisms (SNPs) located in 3'-untranslated region (3'-UTR) of the gene via interactions with microRNAs. Using a series of in silico assays, we selected the candidate microRNAs (miRNAs) with the potential to interact with functional SNPs of TAP2.

View Article and Find Full Text PDF

Background: 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), a heterocyclic aromatic amine (HCA) formed in meat that is cooked at high temperatures and then ingested, can potentially be retained in human adipose tissues.

Methods: To determine if PhIP is bioactive in the adipocyte, we exposed a human adipocyte cell line,HepG2 and Caco-2 cells to low dose PhIP. Uptake and retention of PhIP was determined and cytotoxicity was assessed by the TUNEL assay.

View Article and Find Full Text PDF

The development of breast cancer is linked to the loss of estrogen receptor (ER) during the course of tumor progression, resulting in loss of responsiveness to hormonal treatment. The mechanisms underlying dynamic ERα gene expression change in breast cancer remain unclear. A range of physiological and biological changes, including increased adipose tissue hypoxia, accompanies obesity.

View Article and Find Full Text PDF

Background: Sulfotransferase 1A1 (SULT1A1) gene expression is tissue specific, with little to no expression in normal breast epithelia. Expression in breast tumors has been documented, but the transcriptional regulation of SULT1A1 in human breast tissue is poorly understood. We identified Nuclear Factor I (NFI) as a transcription factor family involved in the regulation of SULT1A1 expression.

View Article and Find Full Text PDF