Publications by authors named "Lora A Shiflett"

Osteoporosis and sarcopenia (osteosarcopenia (OS)) are twin-aging diseases. The biochemical crosstalk between muscle and bone seems to play a role in OS. We have previously shown that osteocytes produce soluble factors with beneficial effects on muscle and .

View Article and Find Full Text PDF

Bone formation, remodeling and repair are dynamic processes, involving cell migration, ECM assembly, osteocyte embedding, and bone resorption. Using live-cell imaging, we previously showed that osteoblast assembly of the ECM proteins fibronectin and collagen is highly dynamic and is integrated with cell motility. Additionally, osteoblast-to-osteocyte transition involved arrest of cell motility, followed by dendrite extension and retraction that may regulate positioning of embedding osteocytes.

View Article and Find Full Text PDF

The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway.

View Article and Find Full Text PDF
Article Synopsis
  • Osteocytes, previously seen as inactive, play vital roles in bone biology such as mechanotransduction and regulating the function of bone-forming and bone-resorbing cells.
  • Researchers have developed two new clonal osteogenic cell lines, OmGFP66 and OmGFP10, which help to study osteocytes, with OmGFP66 uniquely forming 3D bone-like structures that mimic real bone.
  • These cell lines exhibit important characteristics of osteocytes, express various markers for osteocyte differentiation, and respond to hormonal stimulation, making them valuable for understanding bone biology and mechanotransduction.
View Article and Find Full Text PDF

Purpose: Transgenic Cre lines are a valuable tool for conditionally inactivating or activating genes to understand their function. Here, we provide an overview of Cre transgenic models used for studying gene function in bone cells and discuss their advantages and limitations, with particular emphasis on Cre lines used for studying osteocyte and osteoclast function.

Recent Findings: Recent studies have shown that many bone cell-targeted Cre models are not as specific as originally thought.

View Article and Find Full Text PDF

We describe a primary neuronal culture system suitable for molecular characterization of herpes simplex virus type 1 (HSV-1) infection, latency, and reactivation. While several alternative models are available, including infections of live animal and explanted ganglia, these are complicated by the presence of multiple cell types, including immune cells, and difficulties in manipulating the neuronal environment. The highly pure neuron culture system described here can be readily manipulated and is ideal for molecular studies that focus exclusively on the relationship between the virus and host neuron, the fundamental unit of latency.

View Article and Find Full Text PDF

During lytic infections, the herpes simplex virus (HSV) virion host shutoff (Vhs) endoribonuclease degrades many host and viral mRNAs. Within infected cells it cuts mRNAs at preferred sites, including some in regions of translation initiation. Vhs binds the translation initiation factors eIF4H, eIF4AI, and eIF4AII, suggesting that its mRNA degradative function is somehow linked to translation.

View Article and Find Full Text PDF

The herpes simplex virus (HSV) virion host shutoff (Vhs) protein is an endoribonuclease that accelerates decay of many host and viral mRNAs. Purified Vhs does not distinguish mRNAs from nonmessenger RNAs and cuts target RNAs at many sites, yet within infected cells it is targeted to mRNAs and cleaves those mRNAs at preferred sites including, for some, regions of translation initiation. This targeting may result in part from Vhs binding to the translation initiation factor eIF4H; in particular, several mutations in Vhs that abrogate its binding to eIF4H also abolish its mRNA-degradative activity, even though the mutant proteins retain endonuclease activity.

View Article and Find Full Text PDF