J Phys Chem C Nanomater Interfaces
August 2024
Electrochemical SERS of pyridine adsorbed on a silver electrode has been analyzed by comparing the spectra to the calculated normal Raman and resonance Raman intensities of model systems of pyridine bonded to linear silver clusters with different densities of charge through the nitrogen (Ag-NPy) or flipped through the hydrogen in the para-position (Ag-HPy). The changes observed in the ν(CH) region of the SERS have been investigated for the first time and related to a molecular reorientation at negative surface excess of charge of the metal in such a way that the ν(CH) bands with the highest (mode 2) and lowest (mode 13) wavenumber dominate this spectral region at positive or negative electrode potentials, respectively. The calculations support that the ν(CH) region is dominated by a specific vibration depending on pyridine orientation and suggest that both species coexist in the SERS recorded at negative potentials.
View Article and Find Full Text PDFWe present a computational model for electrochemical surface-enhanced Raman scattering (EC-SERS). The surface excess of charge induced by the electrode potential () was introduced by applying an external electric field to a set of clusters [Ag] with (, ) of (19, ±1) or (20, 0) on which a molecule adsorbs. Using DFT/TD-DFT calculations, these metal-molecule complexes were classified by the adsorbate partial charge, and the main -dependent properties were simultaneously studied with the aid of vibronic resonance Raman computations, namely, changes on the vibrational wavenumbers, relative intensities, and enhancement factors (EFs) for all SERS mechanisms: chemical or nonresonant, and resonance Raman with bright states of the adsorbate, charge-transfer (CT) states, and plasmon-like excitations on the metal cluster.
View Article and Find Full Text PDFSilver nanoparticles functionalized with thiolated β-cyclodextrin (CD-SH) were employed for the detection of bisphenols (BPs) A, B, and S by means of surface-enhanced Raman spectroscopy (SERS). The functionalization of Ag nanoparticles with CD-SH leads to an improvement of the sensitivity of the implemented SERS nanosensor. Using a multivariate analysis of the SERS data, the limit of detection of these compounds was estimated at about 10 M, in the range of the tens of ppb.
View Article and Find Full Text PDFThe detection of emerging contaminants in the aquatic environment, such as ibuprofen and caffeine, was studied by means of surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticles (AgNPs) synthesized with β-cyclodextrin (βCD) as a reducing agent. The effect on the SERS signal of different molar ratios of Ag/βCD in the synthesis route and the aging process of AgNPs were investigated by using trans-cinnamic as a test molecule. The SERS effectiveness of these β-cyclodextrin colloids (Ag@βCD) was also checked and compared with that of other silver sols usually employed in SERS synthesized by using other reducing agents such as citrate, borohydride and hydroxylamine.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2021
Surface-enhanced Raman scattering of thiobenzoic acid and thiobenzamide have been recorded on three different silver colloids in order to find the chemical species responsible for the spectra and to detect differences in the adsorption with respect to their oxygen counterparts, benzoic acid and benzamide, respectively. Very significant and unexpected shifts of opposite sign between the Raman and SERS wavenumbers have been detected. By comparing the experimental and DFT calculated wavenumbers, it can be concluded that the acid is bonded to the metal as thiobenzoate through the sulfur atom with unidentate coordination.
View Article and Find Full Text PDFElectrochemical surface-enhanced Raman scattering (SERS) of the cruciform system 1,4-bis(()-2-(pyridin-4-yl)vinyl)naphthalene (bpyvn) was recorded on nanostructured silver surfaces at different electrode potentials by using excitation laser lines of 785 and 514.5 nm. SERS relative intensities were analyzed on the basis of the resonance Raman vibronic theory with the help of DFT calculations.
View Article and Find Full Text PDFA Surface-Enhanced Raman Scattering (SERS) spectrum of 4-cyanopyridine (4CNPy) was recorded on silver plasmonic nanoparticles and analyzed by using Density Functional Theory (DFT) calculations. Two simple molecular models of the metal-4CNPy surface complex with a single silver cation or with a neutral dimer (Ag-4CNPy, Ag-4CNPy), linked through the two possible interacting sites of 4CNPy (aromatic nitrogen, N, and nitrile group, CN), were considered. The calculated vibrational wavenumbers and intensities of the adsorbate and the isolated species are compared with the experimental Raman and SERS results.
View Article and Find Full Text PDFVibrational wavenumbers of pyridine adsorbed on a silver electrode have been correlated to the calculated ones from different theoretical approaches based on DFT methods. The vibrational tuning caused by the electrode potential has been simulated by means of pyridine-silver clusters with different densities of charge or, alternatively, under applied external electric fields. Both methodologies predict correctly a qualitative red-shift of the vibrational wavenumbers at negative potentials.
View Article and Find Full Text PDFThe electron donor-acceptor properties of 9,10-bis(()-2-(pyridin-4-yl)vinyl) anthracene (BP4VA) are studied by means of surface-enhanced Raman scattering (SERS) spectroscopy and vibronic theory of resonance Raman spectroscopy. The SERS spectra recorded in an electrochemical cell with a silver working electrode have been interpreted on the basis of resonance Raman vibronic theory assisted by DFT calculations. It is demonstrated that the adsorbate-metal interaction occurs through the nitrogen atom of the pyridyl moiety.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) spectroscopy of pyridazine shows the selective enhancement of the bands recorded at about 1570, 1450 and 380 cm-1, which are assigned to two different types of vibrations. The first two correspond to in-plane 8a;νring and 19b;δ(CH) totally symmetric A1 modes, respectively, while the last band is assigned to the out-of-plane 16b;τring,B1 vibration. The selective enhancement has been analyzed on the basis of a resonant Raman process involving photoexcited metal (M)-to-molecule (A) charge transfer (CT: M-A + hν → M+-A-) states of the metal-adsorbate surface complex, which have also been related to the doublet electronic states of the corresponding radical anion of the adsorbate (A-).
View Article and Find Full Text PDFThe photochemical decomposition of 4-methoxyphenyl azide (CHO-Ph-N) is investigated using multiconfigurational second-order perturbation theory (MS-CASPT2). In addition, the multi-state resonance Raman spectra of the reactant, intermediates, and product are computed with a multi-state version of the vibronic theory of Albrecht. The results support that the key step of the photolysis of the parent azide is a 2A'/2A'' intersystem crossing which in a second step decays through a 2A''/1A'' conical intersection to give directly the formation of triplet 4-methoxyphenyl nitrene (CHO-Ph-N) in its lowest electronic state, 1A''.
View Article and Find Full Text PDFThe differences between alternative approaches for quantifying the complex effect of the electronic structure of charged metal-molecule hybrids in SERS (the so-called chemical enhancement mechanism) are highlighted. The discussion is focussed on the predictions obtained by using different methodological tools for modelling the role of the electrode potential in the SERS relative intensities. Finite electric fields are used in the commented paper for this purpose, but we have found some inconsistences in the results and the method for calculating the Raman intensities is not made sufficiently clear, which prevents the assessment of the results.
View Article and Find Full Text PDFTD-DFT calculations predict a linear dependence of the energies of charge transfer states of Ag-pyrazine-Ag molecular junctions on the inverse of the size (1/n) of the linear metal chains. The density of charge (q = q/n) in the metal-to-metal charge transfer excited states (CT: Ag-pyrazine-Ag) smoothly tunes the electronic structure of the junction, especially the metal-to-molecule charge transfer states (CT and CT) and the first excited singlet of pyrazine (S). In enlarged junctions, pyrazine bonds preferably to one of the Ag clusters and this weak adsorption produces a significant unexpected asymmetry for forward and reverse charge transfer processes.
View Article and Find Full Text PDFSurface-Enhanced Raman Spectra (SERS) of methyl N-(1H-benzimidazol-2-yl)carbamate (MBC), usually named carbendazim, have been recorded on silver colloids at different pH values. In order to identify the neutral, protonated or deprotonated species of MBC that originate the SERS, the vibrational wavenumbers of these three isolated forms and linked to a silver atom have been predicted by carrying out DFT calculations. The results indicate that the active SERS species in the studied pH range correspond to the neutral MBC and its deprotonated ion in the amidate form.
View Article and Find Full Text PDFDFT calculations predict that plasmon-like excitations in small metal clusters are able to selectively modify the relative intensities of specific SERS bands of adsorbed molecules. These electronic resonances provide new kinds of SERS selection rules which can explain the huge enhancement of mode 9a of pyridine in the spectra recorded at negative electrode potentials.
View Article and Find Full Text PDFDFT calculations predict two different electronic structures of metal-molecule hybrids which are selected depending on the surface charge. While the metal-to-molecule CT states are very sensitive to the charge, the energies of the reverse molecule-to-metal CT processes are surprisingly not modified at all by the charge of the metal.
View Article and Find Full Text PDFSilver nanoparticles (NPs) functionalized with the molecular assembler bis-acridinium dication lucigenin (LG) have been used as a chemical sensor system to detect a group of polycyclic aromatic hydrocarbon (PAH) pollutants in a multicomponent mixture by means of surface-enhanced raman scattering (SERS). The effectiveness of this system was checked for a group of PAHs with different numbers of fused benzene rings, namely anthracene, pyrene, triphenylene, benzo[c]phenanthrene, chrysene, and coronene. In order to determine the host capacity of this sensor system, the self-assembly of the LG viologen on a metallic surface has been checked by analyzing SERS intensities of PAH bands at different LG concentrations.
View Article and Find Full Text PDFThis communication reports, for the first time, the dependence of the SERS intensities under resonant CT conditions (SERS-CT) on the electrode potential. SERS-CT intensities have been estimated from the properties of S(0)-CT(i) transitions ranging between 200-1200 nm of selected [Ag(n)-pyridine](q) and [Ag(n)-pyrazine](q) complexes.
View Article and Find Full Text PDFSurface enhanced raman scattering (SERS) of triphenylene (TP) has been recorded on Ag nanoparticles functionalized with the molecular assembler bis-acridinium lucigenine dication (LG) which approaches the adsorbate to the metal surface allowing for its detection. Structural information on the host and the analyte can be extracted from the SERS spectra of LG and LG/TP complex. The acridinium planes in LG are staggered, so cavities into which hydrophobic TP can be allocated are created.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2009
Raman and surface-enhanced Raman scattering (SERS) of 5-fluorouracil (5-FU) have been recorded under several experimental conditions. SERS spectra have been analysed according to a resonant charge-transfer (CT) mechanism similar to a resonance Raman (RR) process, involving the photoinduced transfer of an electron from the Fermi level of the metal to vacant orbitals of the adsorbate (SERS-CT). In order to detect the enhancement mechanism and to identify the chemical species that give rise to the spectra, the theoretical SERS-CT intensities for the dienolic and diketo forms, and its respective N1 and N3 deprotonated anions (5-FU(-)), have been calculated and compared with the experimental results.
View Article and Find Full Text PDFMolecular planarity of penta-p-phenylene (P5P) and several substituted derivatives with four side chains of various lengths, including deca(ethylene glycol) groups, is discussed by considering the changes in the intensity ratio between the Raman bands recorded at 1280 and 1220 cm(-1). The intensity ratio between both bands I(1280)/I(1220) shows a small increase with the size of the substituent, indicating a high rigidity for all these compounds, even those with long oligo(ethylene glycol) side chains. This result is important given that these phenylene derivatives are versatile building blocks for the construction of nanometric tripod-shaped adsorbates for biological applications since the side chains should prevent the nonspecific interaction with proteins.
View Article and Find Full Text PDFSurface-enhanced Raman spectra (SERS) of pyrimidine recorded on a silver electrode have been analyzed on the basis of a resonant Raman (RR) process involving photoexcited charge transfer (CT) states of the metal-adsorbate surface complex. The main feature of the SERS of benzene and azine derivatives is the enhancement of the totally symmetric ring stretching mode 8a due to Franck-Condon contributions related to the CT transition. Although this behavior is observed in the SERS of pyrimidine, its spectrum is also characterized by the strong enhancement of the nontotally symmetric mode 8b.
View Article and Find Full Text PDFRaman and SERS spectra of phenylacetic acid and alpha-phenylglycine on silver sols have been recorded at several concentrations and pH values. The alpha-phenylglycine has been also studied in D(2)O. The respective vibrational assignments have been proposed and the analysis of the SERS spectra has made it possible to conclude that phenylacetic acid links to the metal through its carboxylate group only, while alpha-phenylglycine links also through its amino group.
View Article and Find Full Text PDFThe potential energy surfaces of the ground and valence excited states of both 3H-diazirine and diazomethane have been studied computationally by mean of the CASSCF method in conjunction with the cc-pVTZ basis set. The energies of the critical points found on such surfaces have been recomputed at the CASPT2/cc-pVTZ level. Additionally, ab initio direct dynamic trajectory calculations have been carried out on the S(1) and S(2) surfaces, starting each trajectory run at the region dominated by the conformational molecular rearrangement of diazomethane.
View Article and Find Full Text PDF