The excited states of unstable ^{20}O were investigated via γ-ray spectroscopy following the ^{19}O(d,p)^{20}O reaction at 8 AMeV. By exploiting the Doppler shift attenuation method, the lifetimes of the 2_{2}^{+} and 3_{1}^{+} states were firmly established. From the γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+} and 3_{1}^{+} states, the B(E2) and B(M1) were determined.
View Article and Find Full Text PDFClassical novae are thermonuclear explosions in stellar binary systems, and important sources of Al and Na. While γ rays from the decay of the former radioisotope have been observed throughout the Galaxy, Na remains untraceable. Its half-life (2.
View Article and Find Full Text PDFThe reduced transition probabilities for the 4_{1}^{+}→2_{1}^{+} and 2_{1}^{+}→0_{1}^{+} transitions in ^{92}Mo and ^{94}Ru and for the 4_{1}^{+}→2_{1}^{+} and 6_{1}^{+}→4_{1}^{+} transitions in ^{90}Zr have been determined in this experiment making use of a multinucleon transfer reaction. These results have been interpreted on the basis of realistic shell-model calculations in the f_{5/2}, p_{3/2}, p_{1/2}, and g_{9/2} proton valence space. Only the combination of extensive lifetime information and large scale shell-model calculations allowed the extent of the seniority conservation in the N=50 g_{9/2} orbital to be understood.
View Article and Find Full Text PDFWhen a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning; this phenomenon has been a mystery in nuclear physics for over 40 years. The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum.
View Article and Find Full Text PDFFast-neutron-induced fission of ^{238}U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fission fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission.
View Article and Find Full Text PDFShape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∼40 mass region is discussed.
View Article and Find Full Text PDFWe report on the first measurement of the fission barrier height in a heavy shell-stabilized nucleus. The fission barrier height of 254No is measured to be Bf=6.0±0.
View Article and Find Full Text PDFThe rotational band structure of the Z=104 nucleus (256)Rf has been observed up to a tentative spin of 20ℏ using state-of-the-art γ-ray spectroscopic techniques. This represents the first such measurement in a superheavy nucleus whose stability is entirely derived from the shell-correction energy. The observed rotational properties are compared to those of neighboring nuclei and it is shown that the kinematic and dynamic moments of inertia are sensitive to the underlying single-particle shell structure and the specific location of high-j orbitals.
View Article and Find Full Text PDFAppl Radiat Isot
February 2012
Aerosol samples have been studied under different background conditions using gamma-ray coincidence and low-background gamma-ray singles spectrometric techniques with High-Purity Germanium detectors. Conventional low-background gamma-ray singles counting is a competitive technique when compared to the gamma-gamma coincidence approach in elevated background conditions. However, measurement of gamma-gamma coincidences can clearly make the identification of different nuclides more reliable and efficient than using singles spectrometry alone.
View Article and Find Full Text PDFA measurement of the energy and spin of superdeformed states in 190Hg, obtained through the observation of transitions directly linking superdeformed and normal states, expands the number of isotopes in which binding energies at superdeformation are known. Comparison with neighboring nuclei shows that two-proton separation energies are higher in the superdeformed state than in the normal state, despite the lower Coulomb barrier and lower total binding energy. This unexpected result provides a critical test for nuclear models.
View Article and Find Full Text PDFThe E(gamma) - E(gamma) coincidence spectra from the electromagnetic decay of excited superdeformed states in (194)Hg reveal surprisingly narrow ridges, parallel to the diagonal. A total of 100-150 excited bands are found to contribute to these ridges, which account for nearly all the unresolved E2 decay strength. Comparison with theory suggests that these excited bands have many components in their wave functions, yet they display remarkable rotational coherence.
View Article and Find Full Text PDFThe excitation energy of the lowest-energy superdeformed band in 196Pb is established using the techniques of time-correlated gamma-ray spectroscopy. Together with previous measurements on 192Pb and 194Pb, this result allows superdeformed excitation energies, binding energies, and two-proton and two-neutron separation energies to be studied systematically, providing stringent tests for current nuclear models. The results are examined for evidence of a "superdeformed shell gap.
View Article and Find Full Text PDFNine transitions of dipole character have been identified linking an excited superdeformed (SD) band in 152Dy to the yrast SD band. As a result, the excitation energy of the lowest level in the excited SD band has been measured to be 14 238 keV. This corresponds to a 1.
View Article and Find Full Text PDFThe excitation energy, spin, and parity of the yrast superdeformed band in 152Dy have been firmly established. The evidence comes mainly from the measured properties of a 4011 keV single-step transition connecting the yrast superdeformed level fed by the 693 keV transition to the 27- yrast state. Four additional, weaker, linking gamma rays have been placed as well.
View Article and Find Full Text PDFThe linear polarization of gamma rays between excited and yrast superdeformed (SD) states in 190Hg was measured using the four-element CLOVER detectors of the EUROBALL IV gamma-ray spectrometer. This measurement shows in a model-independent way that the interband transitions which compete with the highly collective in-band quadrupole transitions are largely enhanced electric dipoles. Not only do these results represent the first measurement of the multipolarity of transitions between different SD states, but they also provide strong evidence for the interpretation of the structures in the SD minimum of the A approximately 190 region in terms of octupole excitations.
View Article and Find Full Text PDF