Publications by authors named "Lopez-Godinez J"

The activation of sea urchin eggs at fertilization provides an ideal system for studying the molecular events involved in cellular activation. Rho GTPases, which are key signaling enzymes in eukaryotes, are involved in sustaining the activation of sea urchin eggs; however, their downstream effectors have not yet been characterized. In somatic cells, RhoA regulates a serine/threonine kinase known as Rho-kinase (ROCK).

View Article and Find Full Text PDF

Sperm must undergo the acrosome reaction (AR) in order to fertilize the egg. In sea urchins, this reaction is triggered by the egg jelly (EJ) which, upon binding to its sperm receptor, induces increases in the ion permeability of the plasma membrane and changes in protein phosphorylation. Here, we demonstrated that the sperm expresses ROCK (approximately 135kDa), which is a serine/threonine protein kinase.

View Article and Find Full Text PDF

At fertilization, the sea urchin egg undergoes an internal pH (pHi) increase mediated by a Na+ -H+ exchanger. We used antibodies against the mammalian antiporters NHE1 and NHE3 to characterize this exchanger. In unfertilized eggs, only anti-NHE3 cross-reacted specifically with a protein of 81-kDa, which localized to the plasma membrane and cortical granules.

View Article and Find Full Text PDF

Cortical granules are secretory vesicles of the egg that play a fundamental role in preventing polyspermy at fertilization. In the sea urchin egg, they localize directly beneath the plasma membrane forming a compact monolayer and, upon fertilization, undergo a Ca(2+)-dependent exocytosis. Cortical granules form during early oogenesis and, during maturation, translocate from the cytosol to the oocyte cortex in a microfilament-mediated process.

View Article and Find Full Text PDF

Fertilization of the sea urchin egg triggers a Ca(2+)-dependent cortical granule exocytosis and cytoskeletal reorganization, both of which are accompanied by an accelerated protein synthesis. The signaling mechanisms leading to these events are not completely understood. The possible role of Rho GTPases in sea urchin egg activation was studied using the Clostridium botulinum C3 exotoxin, which specifically ADP-ribosylates Rho proteins and inactivates them.

View Article and Find Full Text PDF

In most species, cortical granule exocytosis is characteristic of egg activation by sperm. It is a Ca(2+)-mediated event which results in elevation of the vitelline coat to block permanently the polyspermy at fertilization. We examined the effect of mastoparan, an activator of G-proteins, on the sea urchin egg activation.

View Article and Find Full Text PDF

The sea urchin egg has thousands of secretory vesicles known as cortical granules. Upon fertilization, these vesicles undergo a Ca2+-dependent exocytosis. G-protein-linked mechanisms may take place during the egg activation.

View Article and Find Full Text PDF

The Rho proteins are small G-proteins that belong to the Ras superfamily and play an essential role in the organization of the actin cytoskeleton. They are characteristically ADP-ribosylated by the exoenzyme C3 from Clostridium botulinum. Sea urchin sperm contain multiple small G proteins (28-24 kDa) whose identity and function are unknown.

View Article and Find Full Text PDF

In many species, the acrosome reaction of sperm is an obligatory step in fertilization. Increases in [Ca2+]i and pHi, activation of adenylyl cyclase and inositol trisphosphate generation accompany the egg jelly-induced acrosome reaction of sea urchin sperm. The signaling mechanisms involved are unknown.

View Article and Find Full Text PDF