The active forms of Au and Pt in CeO-based catalysts for the water-gas shift (WGS) reaction are an issue that remains unclear, although it has been widely studied. On one hand, ionic species might be responsible for weakening the Ce-O bonds, thus increasing the oxygen mobility and WGS activity. On the other hand, the close contact of Au or Pt atoms with CeO oxygen vacancies at the metal-CeO interface might provide the active sites for an efficient reaction.
View Article and Find Full Text PDFThe dynamics of the magnetic structure in a well ordered ferromagnetic CoPd stripe domain pattern has been investigated upon excitation by femtosecond infrared laser pulses. Time-resolved x-ray magnetic circular dichroism in photoemission electron microscopy (TR-XMCD-PEEM) is used to perform real space magnetic imaging with 100 ps time resolution in order to show local transformations of the domains structures. Using the time resolution of the synchrotron radiation facility of the Helmholtz-Zentrum Berlin, we are able to image the transient magnetic domains in a repetitive pump and probe experiment.
View Article and Find Full Text PDFThe SOLEIL synchrotron radiation source is regularly operated in special filling modes dedicated to pump-probe experiments. Among others, the low-α mode operation is characterized by shorter pulse duration and represents the natural bridge between 50 ps synchrotron pulses and femtosecond experiments. Here, the capabilities in low-α mode of the experimental set-ups developed at the TEMPO beamline to perform pump-probe experiments with soft X-rays based on photoelectron or photon detection are presented.
View Article and Find Full Text PDFFemtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.
View Article and Find Full Text PDFWe present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm(2). Employing resonant spatially muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm(2).
View Article and Find Full Text PDFFemtosecond magnetization phenomena have been challenging our understanding for over a decade. Most experiments have relied on infrared femtosecond lasers, limiting the spatial resolution to a few micrometres. With the advent of femtosecond X-ray sources, nanometric resolution can now be reached, which matches key length scales in femtomagnetism such as the travelling length of excited 'hot' electrons on a femtosecond timescale.
View Article and Find Full Text PDFFor an isolated quantum particle, such as an electron, the orbital (L) and spin (S) magnetic moments can change provided that the total angular momentum of the particle is conserved. In condensed matter, an efficient transfer between L and S can occur owing to the spin-orbit interaction, which originates in the relativistic motion of electrons. Disentangling the absolute contributions of the orbital and spin angular momenta is challenging, however, as any transfer between the two occurs on femtosecond timescales.
View Article and Find Full Text PDFThe development of the capability to engineer the surface properties of materials to match specific requirements demands high quality surface characterization techniques. The ideal tool should provide chemically specific structural characterization as well as surface sensitivity and depth profiling. Ideally the characterization method should also be applicable to systems both with and without long range order.
View Article and Find Full Text PDF