Publications by authors named "Lopez-Duran D"

First-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e.

View Article and Find Full Text PDF

The variation of the HOMO-LUMO band gap is explored for varying packing arrangements of the 4mod BT-4TIC donor-acceptor molecule pair, by means of a high-throughput ab-initio random structure search of packing possibilities. 350 arrangements of the dimer have been relaxed from initial random dispositions, using non-local density-functional theory. We find that the electronic band gap varies within 0.

View Article and Find Full Text PDF

Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Supported by experimental and density-functional theory results, the effect of the support on OH bond cleavage activity is elucidated for nickel/ceria systems. Ambient-pressure O 1s photoemission spectra at low Ni loadings on CeO2 (111) reveal a substantially larger amount of OH groups as compared to the bare support.

View Article and Find Full Text PDF

We report here ((4)He)(N)-Rb(2)((3)Σ(u)) complexes, 2 ≤ N ≤ 20, analysed through a quantum diffusion Monte Carlo stochastic approach. The calculations show that the spin stretched dimer molecule is bound outside the pure He sub-complex, due to the stronger He-He potential as compared with the He-Rb(2) interaction, while the rare gas atom moiety presents, in turn, a shell-like structure with ten He adatoms completing the first shell. Our results agree with previous findings on this and similarly weakly interacting systems.

View Article and Find Full Text PDF

A new full-dimension potential energy surface of the three-body He-Rb₂(³Σ(u)(+)) complex and a quantum study of small (⁴He)(N)-Rb₂(³Σ(u)(+)) clusters, 1 ≤ N ≤ 4, are presented. We have accurately fitted the ab initio points of the interaction to an analytical form and addressed the dopant's vibration, which is found to be negligible. A Variational approach and a Diffusion Monte Carlo technique have been applied to yield energy and geometric properties of the selected species.

View Article and Find Full Text PDF

We present in this work the study of small (4)He(N)-Cs(2)((3)Σ(u)) aggregates (2 ≤ N ≤ 30) through combined variational, diffusion Monte Carlo (DMC), and path integral Monte Carlo (PIMC) calculations. The full surface is modeled as an addition of He-Cs(2) interactions and He-He potentials. Given the negligible strength and large range of the He-Cs(2) interaction as compared with the one for He-He, a propensity of the helium atoms to pack themselves together, leaving outside the molecular dopant is to be expected.

View Article and Find Full Text PDF

In this paper, we carry out variational Monte Carlo and diffusion Monte Carlo (DMC) calculations for Li(2)((1)Sigma(g) (+))((4)He)(N) and Li(2)((3)Sigma(u) (+))((4)He)(N) with N up to 30 and discuss in detail the results of our computations. After a comparison between our DMC energies with the "exact" discrete variable representation values for the species with one (4)He, in order to test the quality of our computations at 0 K, we analyze the structural features of the whole range of doped clusters. We find that both species reside on the droplet surface, but that their orientation is spin driven, i.

View Article and Find Full Text PDF

Ab initio computed interaction forces are employed to describe the microsolvation of the A+2(2Sigma) (A=Li, Na, K) molecular ion in 4He clusters of small variable size. The minimum energy structures are obtained by performing energy minimization based on a genetic algorithm approach. The symmetry features of the collocation of solvent adatoms around the dimeric cation are analyzed in detail, showing that the selective growth of small clusters around the two sides of the ion during the solvation process is a feature common to all three dopants.

View Article and Find Full Text PDF

The Born-Oppenheimer potential energy surface for the Br2(X) molecule interacting with a varying number of 4He bosons is constructed following two different schemes which employ either a full ab initio evaluation of the Br2-He interaction forces or an estimate of the latter through an empirical model. Both descriptions are employed by carrying out diffusion Monte Carlo (DMC) calculations of the ground-state energies and quantum wavefunctions for Br2-(He)n clusters with n up to 24. The results clearly indicate, for both interactions, the occurrence of the full solvation of the molecular dopant within the quantum bosonic "solvent" but also show differences between the two models in terms of the expected density distributions of the surrounding particles within the shorter-range region that makes up the clusters with smaller n values.

View Article and Find Full Text PDF

The role played by the bosonic or fermionic character of He atoms surrounding a Br2(X) molecule is analyzed through vibrotational Raman spectra simulations. Quantum chemistry-type calculations reveal the spin multiplicity to be chiefly responsible for the drastic difference observed by Grebenev et al. [Science 279, 2083 (1998)]] in the rotational structure of molecules embedded in helium droplets.

View Article and Find Full Text PDF

The aim of this paper is to elucidate the role played by the bosonic/fermionic character of N He atoms solvating a Br2(X) molecule. To this end, an adiabatic model in the molecular stretching coordinate is assumed and the ground energy levels of the complexes are searched by means of Hartree (or Hartree-Fock) Quantum Chemistry calculations for 4He (or 3He) solvent atoms. Simulations of vib-rotational Raman spectra point at the spin multiplicity as the main feature responsible for the drastic difference in the rotational structures of molecules embedded in boson or fermion helium drops as already observed by the experiments of Grebenev et al.

View Article and Find Full Text PDF