Fibroblast activation protein (FAP) is a very reliable biomarker for tissue remodeling. FAP has so far mainly been studied in oncology, but there is growing interest in the enzyme in other diseases like fibrosis. Recently, FAP-targeting diagnostics and therapeutics have emerged, of which the so-called FAPIs are among the most promising representatives.
View Article and Find Full Text PDFDipeptidyl peptidases (DPP) 8 and 9 are intracellular serine proteases that play key roles in various biological processes and recent findings highlight DPP8 and DPP9 as potential therapeutic targets for hematological and inflammasome-related diseases. Despite the substantial progress, the precise biological functions of these proteases remain elusive, and the lack of selective chemical tools hampers ongoing research. In this paper, we describe the synthesis and biochemical evaluation of the first active site-directed DPP8/9 probes which are derived from DPP8/9 inhibitors developed in-house.
View Article and Find Full Text PDFSmall-molecular fibroblast activation protein inhibitor (FAPI)-based tracer have been shown to be promising Positron Emission Tomography (PET) Ga-labeled radiopharmaceuticals to image a variety of tumors including pancreatic, breast, and colorectal cancers, among others. In this study, we developed a novel F-labeled FAPI derivative. [F]6 was labeled using a synthon approach based on the tetrazine ligation.
View Article and Find Full Text PDFDipeptidyl peptidase 9 (DPP9) is a proline-selective serine protease that plays a key role in NLRP1- and CARD8-mediated inflammatory cell death (pyroptosis). No selective inhibitors have hitherto been reported for the enzyme: all published molecules have grossly comparable affinities for DPP8 and 9 because of the highly similar architecture of these enzymes' active sites. Selective DPP9 inhibitors would be highly instrumental to address unanswered research questions on the enzyme's role in pyroptosis, and they could also be investigated as therapeutics for acute myeloid leukemias.
View Article and Find Full Text PDFLytic polysaccharide monooxygenases (LPMOs) are surface-active redox enzymes that catalyze the degradation of recalcitrant polysaccharides, making them important tools for energy production from renewable sources. In addition, LPMOs are important virulence factors for fungi, bacteria, and viruses. However, many knowledge gaps still exist regarding their catalytic mechanism and interaction with their insoluble, crystalline substrates.
View Article and Find Full Text PDFSpindles are intracellular crystals of the fusolin protein that enhances the oral virulence of insect poxviruses by disruption of the larval chitinous peritrophic matrix. The enigmatic fusolin protein is classified as a lytic polysaccharide monooxygenase (LPMO) by sequence and structure. Although circumstantial evidence points towards a role for fusolin in chitin degradation, no biochemical data exist to verify this claim.
View Article and Find Full Text PDFRadiopharmaceuticals based on the highly potent FAP inhibitor (FAPi) UAMC-1110 have shown great potential in molecular imaging, but the short tumor retention time of the monomers do not match the physical half-lives of the important therapeutic radionuclides Lu and Ac. This was improved with the dimer DOTAGA.(SA.
View Article and Find Full Text PDFCarboxypeptidase U (CPU, TAFIa, CPB2) is a potent attenuator of fibrinolysis that is mainly synthesized by the liver as its inactive precursor proCPU. Aside from its antifibrinolytic properties, evidence exists that CPU can modulate inflammation, thereby regulating communication between coagulation and inflammation. Monocytes and macrophages play a central role in inflammation and interact with coagulation mechanisms resulting in thrombus formation.
View Article and Find Full Text PDFAn expanding body of evidence, from studies in model organisms to human clinical data, reveals that reproductive health influences organismal aging. However, the impact of germline integrity on somatic aging is poorly understood. Moreover, assessing the causal relationship of such an impact is challenging to address in human and vertebrate models.
View Article and Find Full Text PDFBackground: Aliivibrio salmonicida is the causative agent of cold-water vibriosis in salmonids (Oncorhynchus mykiss and Salmo salar L.) and gadidae (Gadus morhua L.).
View Article and Find Full Text PDFVildagliptin is a marketed DPP4 inhibitor, used in the management of type 2 diabetes. The molecule also has notable DPP8/9 affinity, with some preference for DPP9. Therefore, we aimed to use vildagliptin as a starting point for selective DPP8/9 inhibitors, and to engineer out the parent compound's DPP4-affinity.
View Article and Find Full Text PDFThe gram-negative bacterium Vibrio (Listonella) anguillarum (VA) is the causative agent of vibriosis, a terminal hemorrhagic septicemia affecting the aquacultural industry across the globe. In the current study we used label-free quantitative proteomics to investigate how VA adapts to conditions that mimic defined aspects of vibriosis-related stress such as exposure to oxidative stress (HO), exposure to humoral factors of innate immunity through incubation with Atlantic salmon serum, and iron deprivation upon supplementation of 2,2'-dipyridyl (DIP) to the growth medium. We also investigated how regulation of virulence factors may be governed by the VA growth phase and availability of nutrients.
View Article and Find Full Text PDFThe fish pathogen () LFI1238 is thought to be incapable of utilizing chitin as a nutrient source, since approximately half of the genes representing the chitinolytic pathway are disrupted by insertion sequences. In the present study, we combined a broad set of analytical methods to investigate this hypothesis. Cultivation studies revealed that grew efficiently on acetylglucosamine (GlcNAc) and chitobiose [(GlcNAc)], the primary soluble products resulting from enzymatic chitin hydrolysis.
View Article and Find Full Text PDFRecently, the first squaramide-(SA) containing FAP inhibitor-derived radiotracers were introduced. DATA.SA.
View Article and Find Full Text PDFThe auxin-inducible degradation system (AID) has proven to be a highly versatile technology for rapid, robust and reversible depletion of proteins in multiple model systems. In recent years, AID has been adapted into the nematode Caenorhabditis elegans as a tool for conditional protein knockdown. Numerous transgenic strains have been created that, upon auxin exposure, undergo protein inactivation in the worm germline or somatic tissues, both during development and in young adults.
View Article and Find Full Text PDFAging and immunity are inextricably linked and many genes that extend life span also enhance immunoresistance. However, it remains unclear whether longevity-enhancing factors modulate immunity and longevity by discrete or shared mechanisms. Here, we demonstrate that the Caenorhabditis elegans pro-longevity factor, NHR-49, also promotes resistance against Pseudomonas aeruginosa but modulates immunity and longevity distinctly.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2021
Purpose: Reproductive decline due to parental age has become a major barrier to fertility as couples have delayed having offspring into their thirties and forties. Advanced parental age is also associated with increased incidence of neurological and cardiovascular disease in offspring. Thus, elucidating the etiology of reproductive decline is of clinical importance.
View Article and Find Full Text PDFLytic polysaccharide monooxygenases (LPMOs) contribute to enzymatic conversion of recalcitrant polysaccharides such as chitin and cellulose and may also play a role in bacterial infections. Some LPMOs are multimodular, the implications of which remain only partly understood. We have studied the properties of a tetra-modular LPMO from the food poisoning bacterium Bacillus cereus (named BcLPMO10A).
View Article and Find Full Text PDFLytic polysaccharide monooxygenases (LPMOs) play a crucial role in the degradation of polysaccharides in biomass by catalyzing powerful oxidative chemistry using only a single copper ion as a cofactor. Despite the natural abundance and importance of these powerful monocopper enzymes, the structural determinants of their functionality have remained largely unknown. We have used site-directed mutagenesis to probe the roles of 13 conserved amino acids located on the flat substrate-binding surface of CBP21, a chitin-active family AA10 LPMO from Serratia marcescens, also known as SmLPMO10A.
View Article and Find Full Text PDFLytic polysaccharide monooxygenases are copper-dependent enzymes that perform oxidative cleavage of glycosidic bonds in cellulose and various other polysaccharides. LPMOs acting on cellulose use a reactive oxygen species to abstract a hydrogen from the C1 or C4, followed by hydroxylation of the resulting substrate radical. The resulting hydroxylated species is unstable, resulting in glycoside bond scission and formation of an oxidized new chain end.
View Article and Find Full Text PDFBACKGROUNDWhite matter brain injury in preterm infants can induce neurodevelopmental deficits. Umbilical cord blood (UCB) cells demonstrate neuroprotective properties, but it is unknown whether cells obtained from preterm cord blood (PCB) vs. term cord blood (TCB) have similar efficacy.
View Article and Find Full Text PDFLytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds and represent a promising resource for development of industrial enzyme cocktails for biomass processing. LPMOs show high sequence and modular diversity and are known, so far, to cleave insoluble substrates such as cellulose, chitin and starch, as well as hemicelluloses such as beta-glucan, xyloglucan and xylan. All LPMOs share a catalytic histidine brace motif to bind copper, but differ strongly when it comes to the nature and arrangement of residues on the substrate-binding surface.
View Article and Find Full Text PDFLytic polysaccharide monooxygenases (LPMOs) represent a recent addition to the carbohydrate-active enzymes and are classified as auxiliary activity (AA) families 9, 10, 11, and 13. LPMOs are crucial for effective degradation of recalcitrant polysaccharides like cellulose or chitin. These enzymes are copper-dependent and utilize a redox mechanism to cleave glycosidic bonds that is dependent on molecular oxygen and an external electron donor.
View Article and Find Full Text PDF