Background/objectives: Brown adipose tissue (BAT) plays a crucial role in energy expenditure and thermoregulation and has thus garnered interest in the context of metabolic diseases. Segmentation in medical imaging is time-consuming and prone to inter- and intra-operator variability. This study aims to develop an automated BAT segmentation method using the nnU-Net deep learning framework, integrated into the TotalSegmentator software, and to evaluate its performance in a large cohort of patients with lymphoma.
View Article and Find Full Text PDFIn studies of individuals of primarily European genetic ancestry, common and low-frequency variants and rare coding variants have been found to be associated with the risk of bipolar disorder (BD) and schizophrenia (SZ). However, less is known for individuals of other genetic ancestries or the role of rare non-coding variants in BD and SZ risk. We performed whole genome sequencing of African American individuals: 1,598 with BD, 3,295 with SZ, and 2,651 unaffected controls (InPSYght study).
View Article and Find Full Text PDFTo broaden our understanding of bradyarrhythmias and conduction disease, we performed common variant genome-wide association analyses in up to 1.3 million individuals and rare variant burden testing in 460,000 individuals for sinus node dysfunction (SND), distal conduction disease (DCD) and pacemaker (PM) implantation. We identified 13, 31 and 21 common variant loci for SND, DCD and PM, respectively.
View Article and Find Full Text PDFAims/hypothesis: Several studies have reported associations between specific proteins and type 2 diabetes risk in European populations. To better understand the role played by proteins in type 2 diabetes aetiology across diverse populations, we conducted a large proteome-wide association study using genetic instruments across four racial and ethnic groups: African; Asian; Hispanic/Latino; and European.
Methods: Genome and plasma proteome data from the Multi-Ethnic Study of Atherosclerosis (MESA) study involving 182 African, 69 Asian, 284 Hispanic/Latino and 409 European individuals residing in the USA were used to establish protein prediction models by using potentially associated cis- and trans-SNPs.
Obesity is a significant public health concern. GLP-1 receptor agonists (GLP1-RA), predominantly in use as a type 2 diabetes treatment, are a promising pharmacological approach for weight loss, while bariatric surgery (BS) remains a durable, but invasive, intervention. Despite observed heterogeneity in weight loss effects, the genetic effects on weight loss from GLP1-RA and BS have not been extensively explored in large sample sizes, and most studies have focused on differences in race and ethnicity, rather than genetic ancestry.
View Article and Find Full Text PDFObjective: The objective of this study is to evaluate obesity-related genetic factors in relation to excess consumption and assess if food cues modify associations.
Methods: Children (9-12 years) completed a randomized crossover experiment. During two visits, children ate a preload and then snacks ad libitum while watching television, embedded with food or non-food advertisements to assess eating in the absence of hunger (EAH).
Application of the physical laws of energy and mass conservation at the whole-body level is not necessarily informative about causal mechanisms of weight gain and the development of obesity. The energy balance model (EBM) and the carbohydrate-insulin model (CIM) are two plausible theories, among several others, attempting to explain why obesity develops within an overall common physiological framework of regulation of human energy metabolism. These models have been used to explain the pathogenesis of obesity in individuals as well as the dramatic increases in the prevalence of obesity worldwide over the past half century.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) have identified numerous body mass index (BMI) loci. However, most underlying mechanisms from risk locus to BMI remain unknown. Leveraging omics data through integrative analyses could provide more comprehensive views of biological pathways on BMI.
View Article and Find Full Text PDFClonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels.
View Article and Find Full Text PDFWe construct non-linear machine learning (ML) prediction models for systolic and diastolic blood pressure (SBP, DBP) using demographic and clinical variables and polygenic risk scores (PRSs). We developed a two-model ensemble, consisting of a baseline model, where prediction is based on demographic and clinical variables only, and a genetic model, where we also include PRSs. We evaluate the use of a linear versus a non-linear model at both the baseline and the genetic model levels and assess the improvement in performance when incorporating multiple PRSs.
View Article and Find Full Text PDFObesity is a major risk factor for a myriad of diseases, affecting >600 million people worldwide. Genome-wide association studies (GWASs) have identified hundreds of genetic variants that influence body mass index (BMI), a commonly used metric to assess obesity risk. Most variants are non-coding and likely act through regulating genes nearby.
View Article and Find Full Text PDFClonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood.
View Article and Find Full Text PDFMosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer's disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole genome sequencing of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program.
View Article and Find Full Text PDF