Background: Pituitary pars intermedia dysfunction (PPID) develops slowly in aged horses as degeneration of hypothalamic dopaminergic neurons leads to proliferation of pars intermedia (PI) melanotropes through hyperplasia and adenoma formation. Dopamine (DA) concentrations and tyrosine hydroxylase (TH) immunoreactivity are markedly reduced in PI tissue of PPID-affected equids and treatment with the DA receptor agonist pergolide results in notable clinical improvement. Thus, we hypothesized that pergolide treatment of PPID-affected horses would result in greater DA and TH levels in PI tissue collected from PPID-affected horses versus untreated PPID-affected horses.
View Article and Find Full Text PDFParkinson disease (PD) is prevalent in elderly individuals and is characterized by selective degeneration of igrotriatal opmine (NSDA) neurons. Interestingly, not all dopamine (DA) neurons are affected equally by PD and aging, particularly esoimbic (ML) DA neurons. Here, effects of aging were examined on presynaptic DA synthesis, reuptake, metabolism and neurotoxicant susceptibility of NSDA and mesolimbic dopamine (MLDA) neurons and astrocyte DA metabolism.
View Article and Find Full Text PDFParkinson disease (PD) is characterized by progressive neuronal degeneration, in particular nigrostriatal dopamine (NSDA) neurons and consequent deficits in movement. In mice and non-human primates, NSDA neurons preferentially degenerate following exposure to the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Tuberoinfundibular (TI) DA neurons, in contrast, appear to be unaffected in PD and recover following acute MPTP exposure-induced injury (Behrouz et al.
View Article and Find Full Text PDFThe spleen is a visceral organ that contracts during hypoxia to expel erythrocytes and immune cells into the circulation. Spleen contraction is under the control of noradrenergic sympathetic innervation. The activity of noradrenergic neurons terminating in the spleen capsule is regulated by α2-adrenergic receptors (AR).
View Article and Find Full Text PDFThis study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months.
View Article and Find Full Text PDFA pathological hallmark of Parkinson׳s disease (PD) is progressive degeneration of nigrostriatal dopamine (NSDA) neurons, which underlies the motor symptoms of PD. While there is severe loss of midbrain NSDA neurons, tuberoinfundibular (TI) DA neurons in the mediobasal hypothalamus (MBH) remain intact. In the present study, confocal microscopic analysis revealed that mitochondrial content and numbers of mitophagosomes were lower in NSDA neuronal cell bodies in the substantia nigra pars compacta (SNpc) compared to TIDA neuronal cell bodies in the arcuate nucleus (ARC) of C57BL/6J male mice.
View Article and Find Full Text PDFThe environmental neurotoxicant methylmercury (MeHg) disrupts dopamine (DA) neurochemical homeostasis by stimulating DA synthesis and release. Evidence also suggests that DA metabolism is independently impaired. The present investigation was designed to characterize the DA metabolomic profile induced by MeHg, and examine potential mechanisms by which MeHg inhibits the DA metabolic enzyme aldehyde dehydrogenase (ALDH) in rat undifferentiated PC12 cells.
View Article and Find Full Text PDFParkinson disease causes degeneration of nigrostriatal dopamine (DA) neurons, while tuberoinfundibular DA neurons remain unaffected. A similar pattern is observed following exposure to 1-methy-4-phenyl-1,2,3,6-tetrahydropyradine (MPTP). The mechanism of tuberoinfundibular neuronal recovery from MPTP is associated with up-regulation of parkin protein.
View Article and Find Full Text PDFPeripheral sympathetic noradrenergic neurons originating in the celiac mesenteric plexus have axons that terminate in close proximity to antibody-producing B cells in the spleen. Norepinephrine (NE) released from these neurons is reported to augment antibody production in response to an immune challenge via an action at the β2-adrenergic receptor (β2AR). Cannabinoids are immunosuppressive, and mice lacking CB1 and CB2 receptors (Cnr1(-/-)/Cnr2(-/-) mice) have augmented cell-mediated immune responses.
View Article and Find Full Text PDFHypothalamic tuberoinfundibular dopamine (TIDA) neurons remain unaffected in Parkinson disease (PD) while there is significant degeneration of midbrain nigrostriatal dopamine (NSDA) neurons. A similar pattern of susceptibility is observed following acute exposure to the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and the resistance of TIDA neurons to MPTP is associated with increased expression of parkin and ubiquitin carboxy-terminal hydrolase L-1 (UCHL-1). In the present study, the response of TIDA and NSDA neurons to acute MPTP administration following chronic MPTP exposure was examined.
View Article and Find Full Text PDFThe purpose of this study was to characterize methylmercury (MeHg)-induced dopamine (DA) release from undifferentiated pheochromocytoma (PC12) cells and to examine the potential role for DA synthesis in this process. MeHg caused a significant increase in DA release that was both concentration- and time-dependent. DA release was significantly increased by 2µM MeHg at 60min and by 5µM MeHg at 30min; 1µM MeHg was without effect.
View Article and Find Full Text PDFMotor dysfunctions of Parkinson Disease (PD) are due to the progressive loss of midbrain nigrostriatal dopamine (NSDA) neurons. Evidence suggests a role for cannabinoid receptors in the neurodegeneration of these neurons following neurotoxicant-induced injury. This work evaluates NSDA neurons in CB1/CB2 knockout (KO) mice and tests the hypothesis that CB1/CB2 KO mice are more susceptible to neurotoxicant exposure.
View Article and Find Full Text PDFHypothalamic tuberoinfundibular dopamine (TIDA) neurons remain unaffected in Parkinson disease (PD) while there is significant degeneration of midbrain nigrostriatal dopamine (NSDA) neurons. A similar pattern of susceptibility is observed in acute and chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse and rotenone rat models of degeneration. It is not known if the resistance of TIDA neurons is a constitutive or induced cell-autonomous phenotype for this unique subset of DA neurons.
View Article and Find Full Text PDFDopamine (DA) neurons of the A11 diencephalospinal system represent the sole source of DA innervation to the spinal cord in mice, serving neuromodulatory roles in the processing of nociceptive input and movement. These neurons originate in the dorso-caudal diencephalon and project axons unilaterally throughout the rostrocaudal extent of the spinal cord, terminating predominantly in the dorsal horn. The density of A11 DA axon terminals in the lumbar region is greater in males compared to females, while in both sexes the activity of neurons terminating in the thoracic spinal cord is greater than those terminating in the lumbar region.
View Article and Find Full Text PDF1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is widely used as a neurotoxin in several models of Parkinson's disease in mice. MPTP is metabolized to 1-methyl-4-phenylpyridinium (MPP(+)), which is a mitochondrial toxicant of central dopamine (DA) neurons. There are species, strain, and age differences in sensitivity to MPTP.
View Article and Find Full Text PDFA(11) diencephalospinal dopamine (DA) neurons provide the major source of DA innervation to the spinal cord. DA in the dorsal and ventral horns modulates sensory, motor, nociceptive, and sexual functions. Previous studies from our laboratory revealed a sex difference in the density of DA innervation in the lumbar spinal cord.
View Article and Find Full Text PDFFemale songbirds display preferences for certain song characteristics, but the neural and hormonal mechanisms mediating these preferences are not fully clear. The present study sought to further explore the role of estradiol, as well as assess potential roles of dopaminergic systems, on behavioral responses to song. Adult female zebra finches were treated with estradiol and exposed to tutored or untutored song or silence.
View Article and Find Full Text PDFPrevious reports have shown that antidepressants increase neuronal cell proliferation and enhance neuroplasticity both in vivo and in vitro. This study investigated the direct effects of one such antidepressant, fluoxetine , on cell proliferation and on the production of neurotrophic factors in neuronal precursors derived from human embryonic stem cells (hESCs; H9). Fluoxetine induced the differentiation of neuronal precursors, strongly enhancing neuronal characteristics.
View Article and Find Full Text PDFThe term "autophagic cell death" was coined to describe a form of cell death associated with the massive formation of autophagic vacuoles without signs of apoptosis. However, questions about the actual role of autophagy and its molecular basis in cell death remain to be elucidated. We recently reported that adult hippocampal neural stem (HCN) cells undergo autophagic cell death following insulin withdrawal.
View Article and Find Full Text PDFThe objective of this study was to determine if the phosphodiesterase 5 (PDE-5) inhibitor, sildenafil, could be used as a neuroprotective agent in a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) murine model of Parkinson's disease. The underlying hypothesis of these studies is that blockade of PDE-5 catabolism of cGMP will attenuate the loss of nigrostriatal dopamine (NSDA) neurons following chronic neurotoxin exposure. Chronic MPTP-treated mice were administered sildenafil using three different regimens.
View Article and Find Full Text PDFNovel therapeutic approaches using stem cell transplantation to treat neurodegenerative diseases have yielded promising results. However, survival of stem cells after transplantation has been very poor in animal models, and considerable efforts have been directed at increasing the viability of engrafted stem cells. Therefore, understanding the mechanisms that regulate survival and death of neural stem cells is critical to the development of stem cell-based therapies.
View Article and Find Full Text PDFDopamine (DA) neurons comprising the A11 diencephalospinal system represent the major source of DA innervation to the spinal cord. These neurons project axons throughout the rostrocaudal extent of the spinal cord, terminating predominantly in the dorsal horn. Loss of DA-mediated sensorimotor function in the lumbar segment of spinal cord is implicated in the etiology of Restless Legs Syndrome (RLS), which is more prevalent in females as compared with males.
View Article and Find Full Text PDFTuberoinfundibular dopamine (TIDA) neurons are spared in Parkinson's disease (PD), a disorder that causes degeneration of midbrain nigrostriatal dopamine (NSDA) and mesolimbic dopamine (MLDA) neurons. This pattern of susceptibility has been demonstrated in acute complex I inhibitor-induced models of PD, and extrinsic factors such as toxin distribution, bioactivation, entry into the cell and sequestration into vesicles are postulated to underlie the resistance of TIDA neurons. In the present experiments, direct exposure to rotenone or 1-methyl-4-phenylpyridinium (MPP+) had no effect on mediobasal hypothalamic TIDA neurons, but significantly increased the percentage of apoptag immunoreactive neurons in midbrain primary NSDA and MLDA cultures.
View Article and Find Full Text PDFWe reported upregulation of the 5-hydroxytryptamine (HT) transporter (5-HTT) protein in peripheral arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We hypothesized that upregulated 5-HTT may be generally elevated in hypertensive models and, as a consequence, a higher basal concentration of 5-HT, the 5-HT metabolite 5-hydroxyindoleacetic acid, and an increased 5-HT uptake would occur in peripheral arteries of hypertensive rats compared with normotensive rats. We examined 3 hypertension models: DOCA-salt rats, Nomega-nitro-L-arginine (LNNA) rats, and spontaneously hypertensive rats (SHRs) in our study (systolic blood pressure [mm Hg]: DOCA (D)=197+/-6, SHAM(D)=112+/-4, LNNA (L)=228+/-9, SHAM(L)=128+/-2, SHR=172+/-7, and Wistar-Kyoto [WKY]= 121+/-3).
View Article and Find Full Text PDFTyrosine hydroxylase (TH) protein, phosphorylated at serine-40, serine-31 and serine-19, and enzyme catalytic activity were compared under basal conditions and in activated nigrostriatal dopamine (NSDA) neurons of wild-type and homozygous alpha-synuclein knockout mice. Mice were injected with the D2 antagonist raclopride to stimulate NSDA neuronal activity in the presence or absence of supplemental l-tyrosine. There was no difference in phosphorylated TH levels or TH catalytic activity between wild-type and alpha-synuclein knockout mice under basal conditions or following raclopride-induced acceleration of NSDA activity.
View Article and Find Full Text PDF