J Virol
May 2024
Mycobacterium tuberculosis lung infection results in a complex multicellular structure: the granuloma. In some granulomas, immune activity promotes bacterial clearance, but in others, bacteria persist and grow. We identified correlates of bacterial control in cynomolgus macaque lung granulomas by co-registering longitudinal positron emission tomography and computed tomography imaging, single-cell RNA sequencing, and measures of bacterial clearance.
View Article and Find Full Text PDFHuman infections with highly pathogenic avian influenza A (H5N1) virus are frequently fatal but the mechanisms of disease remain ill-defined. H5N1 infection is associated with intense production of proinflammatory cytokines, but whether this cytokine storm is the main cause of fatality or is a consequence of extensive virus replication that itself drives disease remains controversial. Conventional intratracheal inoculation of a liquid suspension of H5N1 influenza virus in nonhuman primates likely results in efficient clearance of virus within the upper respiratory tract and rarely produces severe disease.
View Article and Find Full Text PDFThe Regional Biocontainment Laboratory (RBL) at the University of Pittsburgh is a state-of-the-art ABSL-3 facility that supports research on highly pathogenic viruses and bacteria. Recent advances in radiologic imaging provide several noninvasive, in vivo imaging modalities that can be used to longitudinally monitor animals following experimental infection or vaccination. The University of Pittsburgh RBL provides digital radiography, bioluminescence imaging, and PET/CT.
View Article and Find Full Text PDFCynomolgus macaques infected with low-dose Mycobacterium tuberculosis develop both active tuberculosis and latent infection similar to those of humans, providing an opportunity to study the clinically silent early events in infection. (18)Fluorodeoxyglucose radiotracer with positron emission tomography coregistered with computed tomography (FDG PET/CT) provides a noninvasive method to measure disease progression. We sought to determine temporal patterns of granuloma evolution that distinguished active-disease and latent outcomes.
View Article and Find Full Text PDF