Publications by authors named "Longyan Tian"

Revealing plant-pathogen interactions is important for resistance breeding, but it remains a complex process that presents many challenges. leaf spot of poplars (MLSP) is the main disease in poplars; in China, its pathogens consist of two formae speciales, namely, f. sp.

View Article and Find Full Text PDF

, an entomopathogenic fungus, has been widely used for the control of agricultural and forestry pests. However, sporulation degeneration occurs frequently during the process of successive culture, and we currently lack a clear understanding of the underlying mechanisms. In this study, the metabolic profiles of were comparatively analyzed based on the metabolomics approach of gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Fusarium concentricum Nirenberg & O' Donnell (Ascomycota: Hypocreales) is a fungal species known to infect plants, but never reported as entomopathogenic. Polychrosis cunninhamiacola Liu et Pei (Lepidoptera: Tortricidae: Olethreutinae) is a major and widespread insect pest causing economic losses to cultivated Chinese fir Cunninghamia lanceolata (Lamb.) Hook.

View Article and Find Full Text PDF

Seven entomopathogenic fungi strains (M1-7) were isolated from field-obtained dead coconut hispine beetles Brontispa longissima (Gestro), identified to species, and bioassayed for their pathogenicity. According to ITS sequences, all isolates belong in the genus Metarhizium, mainly M. flavoviride and M.

View Article and Find Full Text PDF

causes destructive vascular wilt diseases on more than 200 plant species, including economically important crops and ornamental trees worldwide. The melanized microsclerotia enable the fungus to survive for years in soil and are crucial for its disease cycle. Previously, we found that the VdPbs2-VdHog1 ( Pbs2- Hog1) module plays key roles in microsclerotial formation, stress responses, and virulence in In this study, two mitogen-activated protein kinase kinase kinases (MAPKKKs) homologous to Ssk2p and Ste11p, which activate the Pbs2p-Hog1p module by phosphorylation in budding yeast, were identified in the genome of Both Δ () and Δ strains showed severe defects in microsclerotial formation and melanin biosynthesis, but the relative importance of these two genes in microsclerotial development was different.

View Article and Find Full Text PDF

Iron homeostasis is essential for full virulence and viability in many pathogenic fungi. Here, we showed that the bZip transcription factor VdHapX functions as a key regulator of iron homeostasis for adaptation to iron-depleted and iron-excess conditions and is required for full virulence in the vascular wilt fungus, Deletion of impaired mycelial growth and conidiation under both iron starvation and iron sufficiency. Furthermore, disruption of led to decreased formation of the long-lived survival structures of , known as microsclerotia.

View Article and Find Full Text PDF

leaf spot disease of poplar (MLDP), caused by the hemibiotrophic pathogen , frequently results in damage to many poplar species. In nature, two formae speciales of exist that are susceptible to different poplar subgenera. f.

View Article and Find Full Text PDF

Verticillium dahliae is a notorious pathogen that causes vascular wilt disease in numerous plant species worldwide. The fungus produces melanized microsclerotia, which helps it survive adverse environmental conditions that it may encounter within its hosts and in the soil. Previously, we determined that the high osmolarity glycerol (HOG) pathway is involved in the environmental stress response of V.

View Article and Find Full Text PDF

bZIP transcription factors play various biological roles in stress responses, conidiation, and pathogenicity in pathogenic fungi. Here, we report two bZIP transcription factors (VDAG_08640 and VDAG_08676) of Verticillium dahliae, which were differentially expressed during microsclerotia development and induced by hydrogen peroxide as well. We find that deletion of either gene does not affect microsclerotia formation and the sensitivity to hydrogen peroxide; however, the mutants manifest decreased activity of extracellular peroxidase and laccase.

View Article and Find Full Text PDF

, a ubiquitous phytopathogenic fungus, forms resting structures, known as microsclerotia that play crucial roles in Verticillium wilt diseases. VdHog1, a mitogen-activated protein kinase (MAPK), controls microsclerotia formation, virulence, and stress response in . In this study, we present detailed evidence that the conserved upstream component of VdHog1, VdPbs2, is a key regulator of microsclerotia formation, oxidative stress and fungicide response and plant virulence in .

View Article and Find Full Text PDF

Verticillium dahliae, a notorious phytopathogenic fungus, causes vascular wilt diseases in many plant species resulting in devastating yield losses worldwide. Due to its ability to colonize plant xylem and form microsclerotia, V. dahliae is highly persistent and difficult to control.

View Article and Find Full Text PDF

The fungus Verticillium dahliae has gained worldwide notoriety as a destructive plant pathogen, causing vascular wilt diseases on diverse plant species. V. dahliae produces melanized resting bodies, known as microsclerotia, which can survive for 15 years in the soil, and are thus critically important in its disease cycle.

View Article and Find Full Text PDF