Publications by authors named "Longwen Deng"

PMCA2, a major calcium pump, is expressed at particularly high levels in Purkinje neurons. Accordingly, PMCA2-null mice exhibit ataxia suggesting cerebellar pathology. It is not yet known how changes in PMCA2 expression or activity affect molecular pathways in Purkinje neurons.

View Article and Find Full Text PDF

Background: Human immunodeficiency virus type 1 (HIV-1) is the etiologic agent of acquired immunodeficiency virus (AIDS). Following entry into the host cell, the viral RNA is reverse transcribed into DNA and subsequently integrated into the host genome as a chromatin template. The integrated proviral DNA, along with the specific chromatinized environment in which integration takes place allows for the coordinated regulation of viral transcription and replication.

View Article and Find Full Text PDF

Recent proteomic applications have demonstrated their potential for revealing the molecular mechanisms underlying neurodegeneration. The present study quantifies cerebellar protein changes in mice that are deficient in plasma membrane calcium ATPase 2 (PMCA2), an essential neuronal pump that extrudes calcium from cells and is abundantly expressed in Purkinje neurons. PMCA2-null mice display motor dyscoordination and unsteady gait deficits observed in neurological diseases such as multiple sclerosis and ataxia.

View Article and Find Full Text PDF

We report here a method for proteomics pattern discovery by utilizing a self-organizing map approach to analyze data obtained from a novel multiplex iTRAQ proteomics method. Through the application of this technique, we were able to delineate the early molecular events preceding dorsal root ganglia neurite outgrowth induced by either nerve growth factor (NGF) or an immunophilin ligand, JNJ460. Following pattern analysis we discovered that each neurotrophic agent promoted mostly distinct increases in protein expression with few overlapping patterns.

View Article and Find Full Text PDF

The human immunodeficiency virus type 1 (HIV-1) Tat protein recruits positive transcription elongation factor b (P-TEFb) to the transactivation response (TAR) RNA structure to facilitate formation of processive transcription elongation complexes (TECs). Here we examine the role of the Tat/TAR-specified cyclin-dependent kinase 9 (CDK9) kinase activity in regulation of HIV-1 transcription elongation and histone methylation. In HIV-1 TECs, P-TEFb phosphorylates the RNA polymerase II (RNAP II) carboxyl-terminal domain (CTD) and the transcription elongation factors SPT5 and Tat-SF1 in a Tat/TAR-dependent manner.

View Article and Find Full Text PDF

Human immunodeficiency virus-1 (HIV-1) is the causative agent of acquired immune deficiency syndrome (AIDS), a disease characterized by CD4+ T lymphocyte depletion. HIV-1 replicates actively in a variety of cells by encoding several regulatory (Tat and Rev) and accessory (Vpr, Vif, Vpu, and Nef) proteins. Accessory proteins, thought initially to be dispensable for infection, have now been shown to be important for efficient infection in vivo.

View Article and Find Full Text PDF

Background: The human T-cell leukemia virus type 1 (HTLV-1) Tax protein indirectly influences transcriptional activation, signal transduction, cell cycle control, and apoptosis. The function of Tax primarily relies on protein-protein interactions. We have previously shown that Tax upregulates the cell cycle checkpoint proteins p21/waf1 and cyclin D2.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) is the etiologic agent of AIDS. Following entry into the host cell, the viral RNA is reverse transcribed into DNA and subsequently integrated into the host genome as a chromatin template. Chromatin structure may be responsible for silencing retroviral gene expression.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) can infect quiescent cells; however, viral production is restricted to actively proliferating cells. Recent evidence has indicated that HIV-1 viral proteins, Vpr and Tat, perturb the cell cycle to optimize HIV-1 replication. Vpr arrests the cell cycle at G2 by inactivating the cyclin B/cdk1 complex.

View Article and Find Full Text PDF

The HIV type 1 (HIV-1) Tat protein stimulates transcription elongation by recruiting P-TEFb (CDK9/cyclin T1) to the transactivation response (TAR) RNA structure. Tat-induced CDK9 kinase has been shown to phosphorylate Ser-5 of RNA polymerase II (RNAP II) C-terminal domain (CTD). Results presented here demonstrate that Tat-induced Ser-5 phosphorylation of CTD by P-TEFb stimulates the guanylyltransferase activity of human capping enzyme and RNA cap formation.

View Article and Find Full Text PDF

Infection with human T-cell leukemia virus type 1 (HTLV-1) results in adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. Tax, a 40-kDa protein, regulates viral and cellular transcription, host signal transduction, the cell cycle, and apoptosis. Tax has been shown to modulate cellular CREB and NFkappaB pathways; however, to date, its role in binding to various host cellular proteins involved in tumorigenesis has not been fully described.

View Article and Find Full Text PDF

Adult T-cell leukemia (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) are associated with Human T-cell lymphotropic virus type 1 (HTLV-1) infection. The viral transactivator, Tax is able to mediate the cell cycle progression by targeting key regulators of the cell cycle such as p21/waf1, p16/ink4a, p53, cyclins D1-3/cdk complexes, and the mitotic spindle checkpoint MAD apparatus, thereby deregulating cellular DNA damage and checkpoint control. Genome expression profiling of infected cells exemplified by the development of DNA microarrays represents a major advance in genome-wide functional analysis.

View Article and Find Full Text PDF

HTLV-1 is the etiologic agent for adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), where viral replication and transformation are largely dependent upon modification of regulatory and host cell cycle proteins. The mechanism of HTLV-1 transformation appears to be distinct from that of many known chronic or acute leukemia viruses and is related to the viral activator Tax. Here we show that cyclin E, can associate tightly with the coactivator p300 and Pol II complex in HTLV-1 infected cells.

View Article and Find Full Text PDF

Human immunodeficiency virus, type 1 (HIV-1), Tat protein activates viral gene expression through promoting transcriptional elongation by RNA polymerase II (RNAPII). In this process Tat enhances phosphorylation of the C-terminal domain (CTD) of RNAPII by activating cell cycle-dependent kinases (CDKs) associated with general transcription factors of the promoter complex, specifically CDK7 and CDK9. We reported a Tat-associated T-cell-derived kinase, which contained CDK2.

View Article and Find Full Text PDF

Background: Expression profiling holds great promise for rapid host genome functional analysis. It is plausible that host expression profiling in an infection could serve as a universal phenotype in virally infected cells. Here, we describe the effect of one of the most critical viral activators, Tat, in HIV-1 infected and Tat expressing cells.

View Article and Find Full Text PDF

Nuclear factor (NF)-kappaB transcription factors are involved in the control of a large number of normal cellular and organismal processes, such as immune and inflammatory responses, developmental processes, cellular growth, and apoptosis. Transcription of the human immunodeficiency virus type 1 (HIV-1) genome depends on the intracellular environment where the integrate viral DNA is regulated by a complex interplay among viral regulatory proteins, such as Tat, and host cellular transcription factors, such as NF-kappaB, interacting with the viral long terminal repeat region. CBP (CREB-binding protein) and p300, containing an intrinsic histone acetyltransferase (HAT) activity, have emerged as coactivators for various DNA-binding transcription factors.

View Article and Find Full Text PDF