The application of supermolecular naonostructures in the photocatalytic carbon dioxide reduction reaction (CORR) has attracted increasing attentions. However, it still faces significant challenges, such as low selectivity for multi-electron products and poor stability. Here, the cuprous oxide (CuO)-modified zinc tetraphenylporphyrin ultrathin nanosheets (ZnTPP NSs) are successfully constructed through the aqueous chemical reaction.
View Article and Find Full Text PDFHere, the molecule-modified Cu-based array is first constructed as the self-supporting tandem catalyst for electrocatalytic CO reduction reaction (CORR) to C products. The modification of cuprous oxide nanowire array on copper mesh (CuO@CM) with cobalt(II) tetraphenylporphyrin (CoTPP) molecules is achieved via a simple liquid phase method. The systematical characterizations confirm that the formation of axial coordinated Co-O-Cu bond between CuO and CoTPP can significantly promote the dispersion of CoTPP molecules on CuO and the electrical properties of CoTPP-CuO@CM heterojunction array.
View Article and Find Full Text PDFPhotocatalytic water oxidation is a key half-reaction for various solar-to-fuel conversion systems but requires simultaneous water affinity and hole accumulation at the photocatalytic site. Here, we present the rational design and synthesis of an ionic-type covalent organic framework (COF) named tetraphenylporphyrin cobalt and cobalt bipyridine complex (CoTPP-CoBpy) COF, combining cobalt porphyrin and cobalt bipyridine building blocks as a photocatalyst for water oxidation. The good dispersibility of porous large-size (>2 micrometers) COF nanosheets (≈1.
View Article and Find Full Text PDFThe zinc-based photocatalysts for CO reduction have attracted increasing attention, however, usually exhibit low CO-to-CH selectivity. Here, the graphene oxide (GO)-coated zinc tetraphenylporphyrin (ZnTPP/GO) nanocomposites are successfully synthesized through a simple method. It is found that with the increase of GO content, the crystallinity of ZnTPP nanocrystals enhances with the size decrease, and then the light absorption can easily match with the solar spectrum.
View Article and Find Full Text PDFRational design, controllable synthesis, and an in-depth mechanism study of Cu-based bifunctional semiconductor heterostructures toward overall water splitting (OWS) are imperative but still face challenges. Herein, n-type iron oxide and p-type nickel phosphide and cobalt phosphide are respectively coupled with p-type cuprous phosphide nanowires on Cu foams via a general growth-phosphorization strategy. These self-supported semiconductor heterojunctions with different built-in potentials () are used as binder-free electrodes for OWS and exhibit significantly improved electrocatalytic activities compared to their counterparts.
View Article and Find Full Text PDFHeterostructure plays an important role in boosting the overall water splitting (OWS) performance of nonprecious metal electrocatalysts. However, rational design and synthesis of semiconductor heterojunctions especially for Cu-based ones as efficient bifunctional electrocatalysts toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) still face challenges, and the in-depth study of catalytic mechanisms is urgently needed. Herein, n-type cobalt layered double hydroxide nanosheets are assembled on p-type cuprous phosphide nanowire to form p-n junction.
View Article and Find Full Text PDFA turn-on fluorometric method is described for the determination of adenosine-5'-triphosphate (ATP). It is based on the displacement of a dye-labeled oligonucleotide from a cobalt(II) based layered double hydroxide (LDH). Due to the electrostatic and ligand exchange interaction, the FAM-labeled DNA is readily adsorbed on the LDH.
View Article and Find Full Text PDFAlkaline phosphatase (ALP) as an essential enzyme plays an important role in clinical diagnoses and biomedical researches. Hence, the development of convenient and sensitivity assay for monitoring ALP is extremely important. In this work, on the basis of chemical redox strategy to modulate the fluorescence of nitrogen-doped graphene quantum dots (NGQDs), a novel label-free fluorescent sensing system for the detection of alkaline phosphatase (ALP) activity has been developed.
View Article and Find Full Text PDFA series of palladium-based catalysts of metal alloying (Sn, Pb) and/or (N-doped) graphene support with regular enhanced electrocatalytic activity were investigated. The peak current density (118.05 mA cm(-2)) of PdSn/NG is higher than the sum current density (45.
View Article and Find Full Text PDFMorphological control of organic nanocrystals (ONCs) is important in the fields ranging from specialty chemicals to molecular semiconductors. Although the thermodynamic shape can be readily predicted, most growth morphologies of ONCs are actually determined by kinetic factors and remain poorly understood. On the basis of the reduction of zinc tetraphenylporphyrin perchlorate (ZnTPP(+)ClO(4)(-)) with sodium nitrite (Na(+)NO(2)(-)), we synthesized two series of ONCs of aquozinc tetraphenylporphyrin (ZnTPP·H(2)O), in the presence of either cetyltrimethylammonium bromide (CTAB) or poly(vinyl pyrrolidone) (PVP) as the capping ligands.
View Article and Find Full Text PDFSuperhydrophobic pure silver film composed of flower-like microstructures built by interconnected silver nanoplates on a copper plate without any modification was prepared by a facile galvanic exchange reaction between the aqueous [Ag(NH3)2]OH and the copper plate, giving rise to a contact angle as high as 157 degrees .
View Article and Find Full Text PDFWe successfully prepared organic core/diffuse-shell nanorods, which presents fluorescence resonance energy transfer from the core to shell components.
View Article and Find Full Text PDFBy employing a colloid chemical reaction method we demonstrate the preparation of organic nanoparticles composed of perylene molecules (PeNPs) based on the reduction of perylene perchlorate by Br- anions in the presence of cetyl trimethyl ammonium bromide (CTA+Br-) in acetonitrile. A discrete nucleation event, followed by a slower controlled growth on the existing particles, is identified during formation of PeNPs. By changing the growth parameters, such as the monomer concentration and the method of injection, quasi-spherical PeNPs with controllable sizes from 25 to 90 nm could be obtained.
View Article and Find Full Text PDF