Publications by authors named "Longtai Zheng"

The aggregation and transmission of SNCA/α-synuclein (synuclein, alpha) is a hallmark pathology of Parkinson disease (PD). PLK2 (polo like kinase 2) is an evolutionarily conserved serine/threonine kinase that is more abundant in the brains of all family members, is highly expressed in PD, and is linked to SNCA deposition. However, in addition to its role in phosphorylating SNCA, the role of PLK2 in PD and the mechanisms involved in triggering neurodegeneration remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • - PLK2 is an important protein kinase linked to brain cell function and is identified as a key early-response gene when microglial cells are stimulated by lipopolysaccharide (LPS).
  • - Inhibition or knockdown of PLK2 reduces the production of proinflammatory factors by blocking the IKKβ-NF-κB signaling pathway, and HSP90α is discovered as a new target of PLK2 that helps regulate this process.
  • - Studies in a mouse model of Parkinson's disease show that removing PLK2 from microglial cells significantly reduces neuroinflammation and protects dopaminergic neurons from damage.
View Article and Find Full Text PDF

Substance use disorder remains a major challenge, with an enduring need to identify and evaluate new, translational targets for effective treatment. Here, we report the upregulation of Hypoxia-inducible factor-1α (HIF-1α) expression by roxadustat (Rox), a drug developed for renal anemia that inhibits HIF prolyl hydroxylase to prevent degradation of HIF-1α, administered either systemically or locally into selected brain regions, suppressed morphine (Mor)-induced conditioned place preference (CPP). A similar effect was observed with methamphetamine (METH).

View Article and Find Full Text PDF

Rationale: Clinical studies have revealed that methamphetamine abuse increases risk for developing Parkinson's diseases. It is thus important to elucidate the mechanisms by which methamphetamine damages dopaminergic neurons.

Objectives: The present study was designed to elucidate the role of the dopamine D1 receptor in methamphetamine-mediated dopaminergic neuronal damage and its underlying mechanisms.

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF) is a pluripotent pro-inflammatory cytokine and is related to acute and chronic inflammatory responses, immune disorders, tumors, and other diseases. In this study, an integrated virtual screening strategy and bioassays were used to search for potent MIF inhibitors. Twelve compounds with better bioactivity than the prototypical MIF-inhibitor ISO-1 (IC = 14.

View Article and Find Full Text PDF

Microglial overactivation-mediated neuroinflammation contributes greatly to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease. Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that is involved in the pathophysiology of various inflammatory diseases by inducing various proinflammatory cytokines. Compound 3-({[4-(4-methoxyphenyl)-6-methyl-2-pyrimidinyl]thio}methyl)benzoic acid (Z-312) is a novel small -molecule inhibitor of MIF tautomeric activity.

View Article and Find Full Text PDF

Background: Microglial activation-mediated neuroinflammation plays an important role in the progression of neurodegenerative diseases. Inflammatory activation of microglial cells is often accompanied by a metabolic switch from oxidative phosphorylation to aerobic glycolysis. However, the roles and molecular mechanisms of glycolysis in microglial activation and neuroinflammation are not yet fully understood.

View Article and Find Full Text PDF

Microglia-mediated neuroinflammation plays an important role in the progression of neurodegenerative diseases including Parkinson's disease (PD). Pleckstrin homology-like domain family A member 1 (PHLDA1) plays an important role in immunological regulation, particularly in the Toll-like receptor-mediated immune response. Here, we explored the potential roles of PHLDA1 in microglia-mediated inflammation and neuronal protection.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative disease characterized by motor impairment and progressive loss of dopamine (DA) neurons. At present, the acute application of neurotoxic drugs such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) are commonly used to simulate the pathology of PD; however, it is difficult to induce the progressive pathogenesis of PD with these models. In this study, we employed DAT promoter-mediated Cre transgenic mice to establish tamoxifen-inducible Dicer conditional knockout (cKO) mice in an effort to mimic the progressive loss of DA neurons and the development of PD-like behavioral phenotypes.

View Article and Find Full Text PDF

Microglia, the brain-resident macrophage, is known as the innate immune cell type in the central nervous system. Microglia is also the major cellular component of tumor mass of gliomas that plays a key role in glioma development. Mutations of isocitrate dehydrogenases 1 and 2 (IDH1/2) frequently occur in gliomas, which leads to accumulation of oncometabolic product 2-hydroxyglutarate (2HG).

View Article and Find Full Text PDF

The autophagy-lysosome pathway (ALP) plays a critical role in the pathology of Parkinson's disease (PD). Clk1 (coq7) is a mitochondrial hydroxylase that is essential for coenzyme Q (ubiquinone) biosynthesis. We have reported previously that Clk1 regulates microglia activation via modulating microglia metabolic reprogramming, which contributes to dopaminergic neuronal survival.

View Article and Find Full Text PDF

Microglia-mediated neuroinflammation plays a critical role in the pathological development of Parkinson's disease (PD). Orphan nuclear receptor Nur77 (Nur77) is abundant in neurons, while its role in microglia-mediated neuroinflammation remains unclear. The present data demonstrated that the expression of Nur77 in microglia was reduced accompanied by microglia activation in response to lipopolysaccharide (LPS) in vitro and in experimental 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-PD mouse model.

View Article and Find Full Text PDF

Aims: Sigma-1 receptors are involved in the pathophysiological process of several neuropsychiatric diseases such as epilepsy, depression. Allosteric modulation represents an important mechanism for receptor functional regulation. In this study, we examined antidepressant activity of the latest identified novel and selective allosteric modulator of sigma-1 receptor 3-methyl-phenyl-2, 3, 4, 5-tetrahydro-1H-benzo[d]azepin-7-ol (SOMCL-668).

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is an attractive therapeutic target for the treatment of inflammatory diseases. In our previous study, 3-[(biphenyl-4-ylcarbonyl)carbamothioyl]amino benzoic acid (compound 1) was discovered as a potent inhibitor of MIF by docking-based virtual screening and bioassays. Here, a series of analogues of compound 1 derived from similarity search and chemical synthesis were evaluated for their MIF tautomerase activities, and their structure-activity relationships were then analyzed.

View Article and Find Full Text PDF

Recent studies have shown that sigma-1 receptor orthodox agonists can inhibit neuroinflammation. SKF83959 (3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine), an atypical dopamine receptor-1 agonist, has been recently identified as a potent allosteric modulator of sigma-1 receptor. Here, we investigated the anti-inflammatory effects of SKF83959 in lipopolysaccharide (LPS)-stimulated BV2 microglia.

View Article and Find Full Text PDF

Androstene derivatives incorporating amino acid methyl esters were prepared, and their anti-inflammatory effects were evaluated in lipopolysaccharide (LPS)-activated BV-2 microglial cells. Several compounds exhibited dose-dependent inhibition. The most active compound, methyl ((3S,10R,13S)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthrene-17-carbonyl)-L-phenylalaninate (10) significantly suppressed LPS-induced expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α).

View Article and Find Full Text PDF

Background: Phosphodiesterase (PDE) 10A is selectively expressed in medium spiny neurons of the striatum. Nucleus accumbens (NAc) is a key region that mediates drug reward and addiction-related behaviors. To investigate the potential role of PDE10A in the reinforcement properties of morphine, we tested the effect of MP-10, a selective inhibitor of PDE10A, on acquisition, expression, and extinction of morphine-induced conditioned place preference (CPP).

View Article and Find Full Text PDF

Parkinson's disease (PD) drug therapy remains a challenge. Dual modulation of dopamine and 5-HT receptors has emerged as a promising approach in anti-PD drug development. Taking advantage of the newly discovered aporphine analogue(s), (6aR)-11-amino-N-propyl-noraporphine (SOMCL-171), which exhibited dual D2/5-HT1A receptor agonistic activity, we studied the effects of the compound on levodopa-induced dyskinesia (LID) in a PD animal model.

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF) is involved in regulation of both the innate and the adaptive immune responses and is regarded as an attractive anti-inflammatory pharmacological target. In this study, molecular docking-based virtual screening and in vitro bioassays were utilized to identify novel small-molecule inhibitors of MIF. The in vitro enzyme-based assay identified that ten chemically diverse compounds exhibited potent inhibitory activity against MIF in the micromolar regime, including three compounds with IC50 values below 10 μM and one with an IC50 value below 1 μM (0.

View Article and Find Full Text PDF

Glial activation-mediated neuroinflammation plays a pivotal role in the process of several neuroinflammatory diseases including stroke, Alzheimer's diseases, Parkinson's diseases, multiple sclerosis and ischemia. Inhibition of microglial activation may ameliorate neuronal degeneration under the inflammatory conditions. In the present study, a number of 5α-cholestan-6-one derivatives were prepared and the anti-inflammatory effects of these compounds were evaluated in LPS-stimulated BV-2 microglia cells.

View Article and Find Full Text PDF

A series of new aporphine analogues (aporlogues) were synthesized bearing a C-, N-, or O-linkage at the C11 position. Lipoic ester (-)-15 was identified as a full agonist at the dopamine D(2) and serotonin 5-HT(1A) receptors with K(i) values of 174 and 66 nM, respectively. It elicited antiparkinsonian action on Parkinsin's disease (PD) rats with minor dyskinesia.

View Article and Find Full Text PDF

A series of new aporphine analogues (aporlogues) were prepared from appropriate aporphine precursors and arylpiperazines using the Click reaction protocol. These compounds displayed good to high affinity at the D(3) receptor, low or no affinity at the D(1) and D(2) receptors. Compounds 7f and 11c stood out as the most potent at the D(3) receptor among our newly synthesized aporlogues with K(i) values of 2.

View Article and Find Full Text PDF

Aim: The genes were divided into seven categories according to biological function; apoptosis-related, immune response-related, signal transduction-related, cell cycle-related, cell growth-related, stress response-related and transcription-related genes.

Methods: We compared the gene expression profiles of SNU-C4 cells between amygdalin-treated (5 mg/mL, 24 h) and non-treated groups using cDNA microarray analysis. We selected genes downregulated in cDNA microarray and investigated mRNA levels of the genes by RT-PCR.

View Article and Find Full Text PDF

Objective: AIM To establish a drug screening model based on transcriptional regulation of estrogen responsive element (ERE) and use it to screen compounds for discovering new ligands of estrogen receptor (ER) subtypes.

Method: A recombinant reporter vector pERE-TAL-SEAP was constructed by inserting a synthetic sequence composed of five tandem copies of EREs upstream of promoter of the reporter vector pTAL-SEAP. The pERE-TAL-SEAP and the internal control plasmid pCMV were transiently co-transfected into Hela cells expressing ER subtype or ER subtype, and the effects of pure ER agonists 17estradiol, phytoestrogen genistein and pure ER antagonist ICI182, 780 on reporter gene SEAP expression were observed.

View Article and Find Full Text PDF