Publications by authors named "Longsheng Lu"

Coronary artery calcification (CAC) is a key marker of coronary artery disease (CAD) but is often underreported in cancer patients undergoing non-gated CT or PET/CT scans. Traditional CAC assessment requires gated CT scans, leading to increased radiation exposure and the need for specialized personnel. This study aims to develop an artificial intelligence (AI) method to automatically detect CAC from non-gated, freely-breathing, low-dose CT images obtained from positron emission tomography/computed tomography scans.

View Article and Find Full Text PDF

Wearable electrocardiogram (ECG) devices are the mainstream technology in the diagnosis of various cardiovascular diseases, in which soft, flexible, permeable electrodes are the key link in human-machine interface to capture bioelectrical signals. Herein, we propose a self-template strategy to fabricate silver-coated fiber/silicone (AgCF-S) electrodes. With a simple dissolving-curing-redissolving process, the polyvinyl acetate shell around the AgCF core is in-situ removed to form a three-dimensional (3D) multi-channel structure.

View Article and Find Full Text PDF

Photobiomodulation (PBM) is a well-established medical technology that employs diverse light sources like lasers or light-emitting diodes to generate diverse photochemical and photophysical reactions in cells, thereby producing beneficial clinical outcomes. In this study, we introduced an 830 nm near-infrared (NIR) laser irradiation system combined with a microscope objective to precisely and controllably investigate the impact of PBM on the migration and viability of human adipose mesenchymal stem cells (hADSCs). We observed a biphasic dose-response in hADSCs' viability and migration after PBM exposure (0-10 J/cm), with the 5 J/cm group showing significantly higher cell viability and migration ability than other groups.

View Article and Find Full Text PDF

The high temperature induced by surgical electrodes is highly susceptible to severe surface adhesion and thermal damage to adjacent tissues, which is a major challenge in improving the quality of electrosurgery. Herein, we reported a coupled electrode with micro/nano hierarchical structures fabricated by depositing nanoscale hafnium oxide (HfO) coatings on bionic microstructures (BMs) via laser texturing, acid washing, and atomic layer deposition (ALD) techniques. The synergistic effect of HfO coatings and BMs greatly enhanced the hemophobicity of the electrode with a blood contact angle of 162.

View Article and Find Full Text PDF

Platelet extracellular vesicles (PEVs) are an emerging delivery vehi for anticancer drugs due to their ability to target and remain in the tumor microenvironment. However, there is still a lack of understanding regarding yields, safety, drug loading efficiencies, and efficacy of PEVs. In this study, various methods were compared to generate PEVs from clinical-grade platelets, and their properties were examined as vehicles for doxorubicin (DOX).

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on improving treatment for advanced thymic malignancies through personalized therapy based on predictive biomarkers, using cancer avatars (organoids from patient samples) to test drug sensitivity.
  • - Researchers conducted tests on 12 patients and found a successful creation of cancer avatars from 76.2% of liquid biopsies, showing strong potential for predicting patient responses to treatments.
  • - Results indicated a significant correlation between drug sensitivity tests and actual clinical responses, supporting the use of these organoids for personalized cancer treatment, with further validation needed.
View Article and Find Full Text PDF

Flexible full-textile pressure sensor is able to integrate with clothing directly, which has drawn extensive attention from scholars recently. But the realization of flexible full-textile pressure sensor with high sensitivity, wide detection range, and long working life remains challenge. Complex recognition tasks necessitate intricate sensor arrays that require extensive data processing and are susceptible to damage.

View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted on twelve Asian patients with various types of sarcoma who received interval-compressed chemotherapy, alternating between two specific drug regimens (VDC and IE), with support from filgrastim and carboplatin for certain cases.
  • The treatment included a total of 129 cycles, with a median interval of 19 days between cycles, and showed that patients had manageable side effects, like neutropenia and low platelet counts, with a notable percentage experiencing fever.
  • Out of the nine patients with measurable tumors, seven showed a positive response to the treatment, indicating that this chemotherapy approach is feasible for Asian children and young adults with sarcoma.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed a novel nanocomposite (PIA-NC) by combining a cancer-fighting drug (afatinib) with materials that can produce heat (polypyrrole and iron oxide), aiming to target cells with high levels of EGFR.
  • * Experimental results showed that PIA-NCs were effective in enhancing the sensitivity of EGFR-overexpressing lung cancer cells to NIR-PTT, significantly increasing their rate of cell death while showing lower toxicity to EGFR-negative cells.
View Article and Find Full Text PDF

This study evaluated dose differences in normal organs at risk, such as the lungs, heart, left anterior descending artery (LAD), right coronary artery, left ventricle, and right breast under personalized breast holder (PERSBRA), when using intensity-modulated radiation therapy (IMRT). This study evaluated the radiation protection offered by PERSBRA in left breast cancer radiation therapy. Here, we retrospectively collected data from 24 patients with left breast cancer who underwent breast-conserving surgery as well as IMRT radiotherapy.

View Article and Find Full Text PDF

Globally, breast cancer is one of the most prevalent diseases, inducing critical intimidation to human health. Lipid-based nanomaterials have been successfully demonstrated as drug carriers for breast cancer treatment. To date, the development of a better drug delivery system based on lipid nanomaterials is still urgent to make the treatment and diagnosis easily accessible to breast cancer patients.

View Article and Find Full Text PDF

Purpose: Breast immobilization with personalized breast holder (PERSBRA) is a promising approach for normal organ protection during whole breast radiotherapy. The aim of this study is to evaluate the skin surface dose for breast radiotherapy with PERSBRA using different radiotherapy techniques.

Materials And Methods: We designed PERSBRA with three different mesh sizes (large, fine and solid) and applied them on an anthropomorphic(Rando) phantom.

View Article and Find Full Text PDF

Photobiomodulation (PBM) has recently emerged in cellular therapy as a potent alternative in promoting cell proliferation, migration, and differentiation during tissue regeneration. Herein, a single-cell near-infrared (NIR) laser irradiation system (830 nm) and the image-based approaches were proposed for the investigation of the modulatory effects in mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), and vesicle transport in single living human adipose mesenchymal stem cells (hADSCs). The irradiated-hADSCs were then stained with 2',7'-dichlorodihydrofluorescein diacetate (HDCFDA) and Rhodamine 123 (Rh123) to represent the ΔΨm and ROS production, respectively, with irradiation in the range of 2.

View Article and Find Full Text PDF

Introduction: Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive and has poor prognosis. There are few biomarkers to inform treatment decisions, and collecting tumour samples for testing is challenging.

Methods: Circulating tumour cells (CTCs) from patients with PDAC liquid biopsies were expanded ex vivo to form CTC-derived organoid cultures, using a laboratory-developed biomimetic cell culture system.

View Article and Find Full Text PDF

There has been great interest in identifying the biological substrate for light-cell interaction and their relations to cancer treatment. In this study, a near-infrared (NIR) laser is focused into the nucleus (nNIR) or cytoplasm (cNIR) of a single living cell by a high numerical aperture condenser to dissect the novel role of cell nucleus in mediating NIR effects on mitochondrial dynamics of A549 non-small cell lung cancer cells. Our analysis showed that nNIR, but not cNIR, triggered mitochondrial fission in 10 min.

View Article and Find Full Text PDF

Advances in cancer management have significantly improved survival in patients with cancers. Cardiovascular complications of cancer treatment are becoming significant competing causes of death in these patients. Radiotherapy is an indispensable component of cancer treatment, and irradiation of the heart and vasculature during cancer radiotherapy is now recognized as a new risk factor for cardiovascular diseases.

View Article and Find Full Text PDF

Magnetic resonance-guided focused ultrasound surgery (MRgFUS) constitutes a noninvasive treatment strategy to ablate deep-seated bone metastases. However, limited evidence suggests that, although cytokines are influenced by thermal necrosis, there is still no cytokine threshold for clinical responses. A prediction model to approximate the postablation immune status on the basis of circulating cytokine activation is thus needed.

View Article and Find Full Text PDF

Extracellular matrix (ECM) of the tumor microenvironment (TME), including topography and biological molecules, is crucial in cancer cell attachment, growth, and even the sensitivity to the chemo and cell drugs treatment. This study hypothesizes that mimic ECM structures can alter the attachment and drug sensitivity of cancer cells. A family of artificial ECM called colloidal self-assembled patterns (cSAPs) was fabricated to mimic tumor ECM structures.

View Article and Find Full Text PDF

Survival prediction is highly valued in end-of-life care clinical practice, and patient performance status evaluation stands as a predominant component in survival prognostication. While current performance status evaluation tools are limited to their subjective nature, the advent of wearable technology enables continual recordings of patients' activity and has the potential to measure performance status objectively. We hypothesize that wristband actigraphy monitoring devices can predict in-hospital death of end-stage cancer patients during the time of their hospital admissions.

View Article and Find Full Text PDF

Sensitivity and strain range are two mutually exclusive features of strain sensors, where a significant improvement in flexibility is usually accompanied by a reduction in sensitivity. The skin of a human fingertip, due to its undulating fingerprint pattern, can easily detect environmental signals and enhances sensitivity without losing elasticity. Inspired by this characteristic, laser-induced graphene (LIG) with a fingerprint structure is prepared in one step on a polyimide (PI) film and transferred into an Ecoflex substrate to assemble resistive strain sensors.

View Article and Find Full Text PDF

The advanced-stage head and neck cancer (HNC) patients respond poorly to platinum-based treatments. Thus, a reliable pretreatment method for evaluating platinum treatment response would improve therapeutic efficiency and outcomes. This study describes a novel strategy to predict clinical drug responses in HNC patients by using eSelect, a lab-developed biomimetic cell culture system, which enables us to perform ex vivo expansion and drug sensitivity profiling of circulating tumor cells (CTCs).

View Article and Find Full Text PDF

Bacterial infection remains a great risk in medical implantation surgery. In this paper, we found that degradable metals may be a feasible alternative option of antibacterial implantation materials. It is known that the spalling mechanism of magnesium (Mg) during degradation leads to Mg ions-induced alkaline environment, which is harmful to planktonic bacteria.

View Article and Find Full Text PDF

Oral cancers, hepatocellular carcinoma, and colorectal cancers are the three most common cancers, leading to 18,000 cases of cancer-related mortality in Taiwan per year. To bridge the gap towards clinical translation, we developed a circulating tumor cell (CTC) organoid culture workflow that efficiently expands CTC from patients to test mycelium-derived bioactive compounds. Three ACM-derived bioactive compounds were evaluated for tumor chemosensitization characteristics.

View Article and Find Full Text PDF

Three-dimensional (3D) spheroid culture provides opportunities to model tumor growth closer to its natural context. The collagen network in the extracellular matrix supports autonomic tumor cell proliferation, but its presence and role in tumor spheroids remain unclear. In this research, we developed an 3D co-culture model in a microwell 3D (μ-well 3D) cell-culture array platform to mimic the tumor microenvironment (TME).

View Article and Find Full Text PDF

Fuchs endothelial corneal dystrophy is one of the most common indications for corneal transplantation, and impaired anti-oxidative function is observed in corneal endothelial cells (CECs). Curcumin is well-known for its anti-oxidative property; but, no study has examined the effect of curcumin on anti-oxidative therapeutic roles in corneal endothelial disease. In our experiments, oxidative stress 0.

View Article and Find Full Text PDF