In this study, we developed a novel strategy for effective bacteria capture, elimination, and detection. The aptamer of Staphylococcus aureus (S. aureus) was immobilized on FeO NPs and partly hybridized with the T strand, which exhibited good bacterial capture efficiency.
View Article and Find Full Text PDFA novel bipolar electrode (BPE)-electrochemiluminescence (ECL) device was constructed for the ultra-sensitive detection of Staphylococcus aureus (S. aureus) by combining polymerase chain reaction (PCR) amplification and DNA network-loaded polymethylene blue nanoparticles (pMB NPs). The presence of target triggered the dissociation of double-stranded DNA on FeO NPs and the release of T strand, which initiated the PCR.
View Article and Find Full Text PDFBiosensors (Basel)
June 2023
Rapid and efficient detection of mycotoxins is of great significance in the field of food safety. In this review, several traditional and commercial detection methods are introduced, such as high-performance liquid chromatography (HPLC), liquid chromatography/mass spectrometry (LC/MS), enzyme-linked immunosorbent assay (ELISA), test strips, etc. Electrochemiluminescence (ECL) biosensors have the advantages of high sensitivity and specificity.
View Article and Find Full Text PDFA novel portable and disposable bipolar electrode (BPE)-electrochemiluminescence (ECL) device was fabricated for fumonisin B (FB) detection. BPE was fabricated by using MWCNTs and polydimethylsiloxane (PDMS) due to their excellent electrical conductivity and good mechanical stiffness. After the deposition of Au NPs on the cathode of BPE, the ECL signal could be improved 89-fold.
View Article and Find Full Text PDFA novel area controllable biosensing interface is designed on glassy carbon bead (GCB) and used for measurement of tetracycline (TET) in closed bipolar electrode-electrochemiluminescence (ECL) device. One face of GCB is modified with Au particles and the covered area is varied from 0 to 45.3% by tuning the external voltage during bipolar electrodeposition process in a home-made open bipolar electrochemical cell.
View Article and Find Full Text PDFA novel electrochemiluminescence (ECL) closed bipolar electrode (BPE) chip was designed based on a hybridization chain reaction (HCR)-induced ECL amplification strategy for the detection of both DNA and HO. Without the utilization of a patterned ITO bipolar electrode (BPE), this chip platform consisted of an ITO glass coated with two layers of PDMS slices. The ITO cathode was modified with Au nanoparticles for further functionalization of biomolecules, which could also amplify the ECL signal at the anode of the BPE.
View Article and Find Full Text PDF