Publications by authors named "Longqiang Bai"

Soil salinity severely inhibits leaf photosynthesis and limits agricultural production. Red to far-red light ratio (R/FR) affects leaf photosynthesis under salt stress, however, its regulation mechanism is still largely unknown. This study investigated the effects of different R/FR on plant growth, gas exchange parameters, photosynthetic electron transport, Calvin cycle and key gene expression under salt stress.

View Article and Find Full Text PDF

Secondary salinization caused by the overaccumulation of calcium nitrate [Ca(NO)] in soils due to excessive fertilization has become one of the major handicaps of protected vegetable production. Brassinolide, a bioactive plant steroid hormone, plays an important role in improving abiotic stress tolerance in plants. However, whether and how brassinolide (BR) can alleviate Ca(NO) stress remains elusive.

View Article and Find Full Text PDF

The use of heterografts is widely applied for the production of several important commercial crops, but the molecular mechanism of graft union formation remains poorly understood. Here, cucumber grafted onto pumpkin was used to study graft union development, and genome-wide tempo-spatial gene expression at the graft interface was comprehensively investigated. Histological analysis suggested that resumption of the rootstock growth occurred after both phloem and xylem reconnection, and the scion showed evident callus production compared with the rootstock 3 days after grafting.

View Article and Find Full Text PDF

Background: Low temperature severely depresses the uptake, translocation from the root to the shoot, and metabolism of nitrate and ammonium in thermophilic plants such as cucumber (Cucumis sativus). Plant growth is inhibited accordingly. However, the availability of information on the effects of low temperature on nitrogen transport remains limited.

View Article and Find Full Text PDF

The negative effects of environmental stresses, such as low temperature, high temperature, salinity, drought, heavy metal stress, and biotic stress significantly decrease crop productivity. Plant hormones are currently being used to induce stress tolerance in a variety of plants. Brassinosteroids (commonly known as BR) are a group of phytohormones that regulate a wide range of biological processes that lead to tolerance of various stresses in plants.

View Article and Find Full Text PDF

Phytohormone biosynthesis and accumulation are essential for plant growth and development and stress responses. Here, we investigated the effects of 24-epibrassinolide (EBR) on physiological and biochemical mechanisms in cucumber leaves under low-temperature stress. The cucumber seedlings were exposed to treatments as follows: NT (normal temperature, 26 °C/18 °C day/night), and three low-temperature (12 °C/8 °C day/night) treatments: CK (low-temperature stress); EBR (low-temperature and 0.

View Article and Find Full Text PDF

Heterotrimeric guanine nucleotide-binding proteins (G proteins) composed of alpha (Gα), beta (Gβ), and gamma (Gγ) subunits are central signal transducers mediating the cellular response to multiple stimuli, such as cold, in eukaryotes. Plant Gγ subunits, divided into A, B, and C three structurally distinct types, provide proper cellular localization and functional specificity to the heterotrimer complex. Here, we demonstrate that a type C Gγ subunit CsGG3.

View Article and Find Full Text PDF

Cucumber seeds with shallow dormancy start to germinate in fruit that are harvested late. ABSCISIC ACID INSENSITIVE3 (ABI3), a transcription factor in the abscisic acid (ABA) signaling pathway, is one of the most important regulators in the transition from late embryogenesis to germination. Our analysis found a candidate cis-regulatory motif for cucumber BASIC PENTACYSTEINE (CsBPC) in the promoter of .

View Article and Find Full Text PDF

Suboptimal temperature stress often causes heavy yield losses of vegetables by suppressing plant growth during winter and early spring. Gibberellin acid (GA) has been reported to be involved in plant growth and acquisition of mineral nutrients. However, no studies have evaluated the role of GA in the regulation of growth and nutrient acquisition by vegetables under conditions of suboptimal temperatures in greenhouse.

View Article and Find Full Text PDF

Grafting is an important agricultural technique widely used for improving growth, yields and tolerance of crops to abiotic and biotic stresses. As one type of endogenous, non-coding small RNAs, microRNAs (miRNAs) regulate development and responsiveness to biotic and abiotic stresses by negatively mediating expression of target genes at the post-transcriptional level. However, there have been few detailed studies to evaluate the role of miRNAs in mediation of grafting-induced physiological processes in plants.

View Article and Find Full Text PDF