Publications by authors named "Longping Yuan"

Y900 is one of the top hybrid rice (Oryza sativa) varieties, with its yield exceeding 15 t·hm-2. To dissect the mechanism of heterosis, we sequenced the male parent line R900 and female parent line Y58S using long-read and Hi-C technology. High-quality reference genomes of 396.

View Article and Find Full Text PDF

Interactions and co-evolution between plants and herbivorous insects are critically important in agriculture. Brown planthopper (BPH) is the most severe insect of rice, and the biotypes adapt to feed on different rice genotypes. Here, we present genomics analyses on 1,520 global rice germplasms for resistance to three BPH biotypes.

View Article and Find Full Text PDF

Plant architecture is an important agronomic trait that affects crop yield. Here, we report that a gene involved in programmed cell death, , negatively regulates plant architecture and grain yield in rice. We used the CRISPR/Cas9 system to introduce loss-of-function mutations into in 11 rice cultivars.

View Article and Find Full Text PDF

The development of embryo sacs is crucial for seed production in plants, but the genetic basis regulating the meiotic crossover formation in the macrospore and microspore mother cells remains largely unclear. Here, we report the characterization of a spontaneous rice female sterile variation 1 mutant (fsv1) that showed severe embryo sacs abortion with low seed-setting rate. Through map-based cloning and functional analyses, we isolated the causal gene of fsv1, OsMLH3 encoding a MutL-homolog 3 protein, an ortholog of HvMLH3 in barley and AtMLH3 in Arabidopsis.

View Article and Find Full Text PDF

The brown planthopper (BPH) (Nilaparvata lugens Stål) is a highly destructive pest that seriously damages rice (Oryza sativa L.) and causes severe yield losses. To better understand the physiological and metabolic mechanisms through which BPHs respond to resistant rice, we combined mass-spectrometry-based lipidomics with transcriptomic analysis and gene knockdown techniques to compare the lipidomes of BPHs feeding on either of the two resistant (NIL-Bph6 and NIL-Bph9) plants or a wild-type, BPH susceptible (9311) plant.

View Article and Find Full Text PDF

The brown planthopper (BPH), Stål, is one of the major pests of rice. It uses its stylet to penetrate rice phloem, feeding on rice sap and causing direct damage to rice or even plant death. During the feeding process, BPHs secrete saliva into plant tissues, which plays crucial roles in the plant-insect interactions.

View Article and Find Full Text PDF

Obtaining genetic variation information from indica rice hybrid parents and identification of loci associated with heterosis are important for hybrid rice breeding. Here, we resequence 1,143 indica accessions mostly selected from the parents of superior hybrid rice cultivars of China, identify genetic variations, and perform kinship analysis. We find different hybrid rice crossing patterns between 3- and 2-line superior hybrid lines.

View Article and Find Full Text PDF

Understanding the molecular basis of male sterility and developing practical male-sterility systems are essential for heterosis utilization and commercial hybrid seed production in crops. Here, we report molecular regulation by genic male-sterility gene () and its application for developing a dominant male-sterility system in multiple species. is specifically expressed in maize anthers, encodes a plant homeodomain (PHD) finger protein that functions as a transcriptional activator, and plays a key role in tapetal development and pollen exine formation.

View Article and Find Full Text PDF

Heterosis utilization is the most effective way to improve rice yields. The cytoplasmic male-sterility (CMS) and photoperiod/thermosensitive genic male-sterility (PTGMS) systems have been widely used in rice production. However, the rate of resource utilization for the CMS system hybrid rice is low, and the hybrid seed production for the PTGMS system is affected by the environment.

View Article and Find Full Text PDF

Brown planthopper (BPH) is one of the most destructive insects affecting rice ( L.) production. Phenylalanine ammonia-lyase (PAL) is a key enzyme involved in plant defense against pathogens, but the role of PAL in insect resistance is still poorly understood.

View Article and Find Full Text PDF

Background: The breeding and large-scale adoption of hybrid rice is an important achievement in modern agriculture. Mechanized seed production is urgently needed for widespread adoption of hybrid rice because it can compensate for the shortage of manual labor to meet the growing food demands in China.

Results: Here, we report the development of a mechanized hybrid rice seed production method using a female sterile rice.

View Article and Find Full Text PDF
Article Synopsis
  • Rice is a chilling-sensitive staple that originally comes from warm, subtropical areas in Asia, but researchers have identified a trait that allows it to be cultivated in colder, temperate regions.
  • The study focuses on a specific gene (a quantitative trait locus) that regulates chilling tolerance by converting active forms of jasmonic acid to inactive forms, thus helping the plant manage cold stress.
  • A certain allele from temperate rice has a unique genetic modification that enhances its chilling tolerance, pointing to potential advancements in breeding techniques to improve rice cultivation in cooler climates.*
View Article and Find Full Text PDF

Background: Increasing rice yield with fewer external inputs is critical to ensuring food security, reducing environmental costs, and improving returns. Use of hybrid rice has expanded greatly in China due to its higher yield potential. Meanwhile, large and increasing amounts of nitrogen (N) fertilizers have been used for expanding rice production in China.

View Article and Find Full Text PDF

Hybrid rice is the dominant form of rice planted in China, and its use has extended worldwide since the 1970s. It offers great yield advantages and has contributed greatly to the world's food security. However, the molecular mechanisms underlying heterosis have remained a mystery.

View Article and Find Full Text PDF

Traits such as grain shape, panicle length and seed shattering, play important roles in grain yield and harvest. In this study, the cloning and functional analysis of PANICLE TRAITS 2 (PT2), a novel gene from the Indica rice Chuandali (CDL), is reported. PT2 is synonymous with Growth-Regulating Factor 4 (OsGRF4), which encodes a growth-regulating factor that positively regulates grain shape and panicle length and negatively regulates seed shattering.

View Article and Find Full Text PDF

The future of rice breeding will likely be built on the basis of the further utilization of heterosis between elite cultivars and genetic resources from distant subspecies of rice. Previous studies have proved that exogenous genomic DNA transformation methods can be used to transfer genetic information from distant relatives (donor) into cultivated rice (recipient). However, the mechanism underlying this form of genetic transfer is poorly characterized, and the genes that cause the phenotypic changes in these variants are typically difficult to identify.

View Article and Find Full Text PDF

Success of modern agriculture relies heavily on breeding of crops with maximal regional adaptability and yield potentials. A major limiting factor for crop cultivation is their flowering time, which is strongly regulated by day length (photoperiod) and temperature. Here we report identification and characterization of Days to heading 7 (DTH7), a major genetic locus underlying photoperiod sensitivity and grain yield in rice.

View Article and Find Full Text PDF

In this study, we reported that a F-box protein, OsADF, as one of the direct targets of TDR , plays a critical role in rice tapetum cell development and pollen formation. The tapetum, the innermost sporophytic tissue of anther, plays an important supportive role in male reproduction in flowering plants. After meiosis, tapetal cells undergo programmed cell death (PCD) and provide nutrients for pollen development.

View Article and Find Full Text PDF

Rice stripe virus (RSV) causes one of the most serious viral diseases of rice (Oryza sativa L.), but the molecular basis of RSV resistance has remained elusive. Here we show that the resistant allele of rice STV11 (STV11-R) encodes a sulfotransferase (OsSOT1) catalysing the conversion of salicylic acid (SA) into sulphonated SA (SSA), whereas the gene product encoded by the susceptible allele STV11-S loses this activity.

View Article and Find Full Text PDF

Genetic diversity within parental lines of hybrid rice is the foundation of heterosis utilization and yield improvement. Previous studies have suggested that genetic diversity was narrow in cytoplasmic male sterile (CMS/A line) and restorer lines (R line) for Three-line hybrid rice. However, the genetic diversity within maintainer lines (B line), especially at a genome-wide scale, remains largely unknown.

View Article and Find Full Text PDF

Nitrogen (N) is a major limiting factor in crop production, and plant adaptive responses to low N are involved in many post-transcriptional regulation. Recent studies indicate that miRNAs play important roles in adaptive responses. However, miRNAs in soybean adaptive responses to N limitation have been not reported.

View Article and Find Full Text PDF

Immature embryos from immature seeds of rice (Oryza sativa L.) were transformed by biolistic bombardment with the plasmid carrying the coding region of the hygromycin phosphotransferase gene under the control of the 5' region of the cauliflower mosaic virus 35S promoter and the synthetic green fluorescence protein gene (sgfp) under the control of the maize ubiquitine promoter. Southern blot analysis confirmed the stable integration of hpt and sgfp genes in transformants.

View Article and Find Full Text PDF

The Pi-ta gene deployed in southern U.S. rice germplasm is effective in preventing the infection by strains of Magnaporthe oryzae isolates that carry the avirulence (AVR) gene AVR-Pita1.

View Article and Find Full Text PDF

The phytohormone cytokinin (CK) positively regulates the activity and function of the shoot apical meristem (SAM), which is a major parameter determining seed production. The rice (Oryza sativa L.) Gn1a/OsCKX2 (Grain number 1a/Cytokinin oxidase 2) gene, which encodes a cytokinin oxidase, has been identified as a major quantitative trait locus contributing to grain number improvement in rice breeding practice.

View Article and Find Full Text PDF

Chloroplast is a new hotspot in the field of plant transformation system of plant genetic engineering. Plastid transformation has several advantages: high expression, multiple expressed genes in a single transformation event, absence of gene silencing, et al. A series of elements for construction of dicistronic site-specific integration expression vector of rice chloroplast have been cloned, including trnl-trnA (rice chloroplast homologous recombination fragments), Prrn (16S rRNA operon promotor), PpsbA (the 3' untranslated region of the chloroplastpsbA gene), hptll gene (encoding hygromycin phosphotransferase) and EGFP (encoding enhanced green fluorescence protein).

View Article and Find Full Text PDF