Publications by authors named "Longmin Chen"

Background: Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease characterized by synovial inflammation and joint destruction. Despite progress in RA therapy, it remains difficult to achieve long-term remission in RA patients. Phosphodiesterase 3B (Pde3b) is a member of the phosphohydrolyase family that are involved in many signal transduction pathways.

View Article and Find Full Text PDF

Background: Fluvoxamine is one of the selective serotonin reuptake inhibitors (SSRIs) that are regarded as the first-line drugs to manage mental disorders. It has been also recognized with the potential to treat inflammatory diseases and viral infection. However, the effect of fluvoxamine on autoimmune diseases, particularly type 1 diabetes (T1D) and the related cellular and molecular mechanisms, are yet to be addressed.

View Article and Find Full Text PDF

SUMOylation is an evolutionary conserved regulatory mechanism, in which Ubc9 is the only E2 conjugating enzyme. Previous studies demonstrated that SUMOylation is involved in multiple biological processes, but its role in dendritic cells (DCs) remains to be fully addressed. Herein in this report, we found that DCs deficient in Ubc9 protected mice from dextran sulfate sodium (DSS)-induced colitis, as evidenced by the ameliorated weight loss, colon length, and disrupted colon structure.

View Article and Find Full Text PDF

The regulation of autoimmunity against pancreatic islet β cells for type 1 diabetes (T1D) onset is still unclear. NOD/ShiLtJ (NOD) mice are prone to the onset of autoimmune diabetes, but its congenic strain, ALR/Lt (ALR), is not. Here we show that dendritic cells (DC) in ALR mice have impaired migratory and T-cell priming capability.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is linked to an imbalance of immune cells, specifically an increase in Th17 cells and a decrease in regulatory T cells (Tregs), which is correlated with the loss of dopaminergic neurons and motor symptoms in patients.
  • Research showed that the presence of alpha-Synuclein (α-Syn) drives changes in Tregs, leading to their dysfunction and promoting Th17 cell differentiation, which further contributes to the pathology of PD.
  • Inhibiting the transcription factor RORγt can counteract the adverse effects caused by α-Syn stimulation, suggesting a potential therapeutic target for restoring immune balance and protecting dopaminergic neurons in PD.
View Article and Find Full Text PDF

Asthma is a multifactorial disorder characterized by the airway chronic inflammation, hyper-responsiveness (AHR), remodeling, and reversible obstruction. Although asthma is known as a heterogeneous group of diseases with various clinical manifestations, recent studies suggest that more than half of the clinical cases are ''T helper type 2 (Th2)-high'' type, whose pathogenesis is driven by Th2 responses to an inhaled allergen from the environmental exposures. The intensity and duration of inflammatory responses to inhaled allergens largely depend on the balance between effector and regulatory cells, but many questions regarding the mechanisms by which the relative magnitudes of these opposing forces are remained unanswered.

View Article and Find Full Text PDF

Although DNA methylation has been recognised in the pathogenesis of idiopathic pulmonary fibrosis (IPF), the exact mechanisms are yet to be fully addressed. Herein, we demonstrate that lungs originated from IPF patients and mice after bleomycin (BLM)-induced pulmonary fibrosis are characterised by altered DNA methylation along with overexpression in myofibroblasts of methyl-CpG-binding domain 2 (MBD2), a reader responsible for interpreting DNA methylome-encoded information. Specifically, depletion of in fibroblasts or myofibroblasts protected mice from BLM-induced pulmonary fibrosis coupled with a significant reduction of fibroblast differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is linked to impaired mitochondrial function, leading to increased aerobic glycolysis and lactate production in dopaminergic neurons, which may contribute to neuron apoptosis.
  • Researchers discovered elevated levels of key glycolysis enzymes (HK2 and LDH) and lactate in a mouse model of PD and human dopaminergic cells, with exogenous lactate promoting cell death.
  • Inhibition of HK2 via 3-bromopyruvic acid reduced lactate levels and neuron apoptosis, while improving motor behavior in PD mice, suggesting potential therapeutic targets through glycolysis regulation.
View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disease that resulted from the severe destruction of the insulin-producing β cells in the pancreases of individuals with a genetic predisposition. Genome-wide studies have identified HLA and other risk genes associated with T1D susceptibility in humans. However, evidence obtained from the incomplete concordance of diabetes incidence among monozygotic twins suggests that environmental factors also play critical roles in T1D pathogenesis.

View Article and Find Full Text PDF

Kdm2a catalyzes H3K36me2 demethylation to play an intriguing epigenetic regulatory role in cell proliferation, differentiation, and apoptosis. Herein we found that myeloid-specific knockout of Kdm2a (LysM-Cre-Kdm2a, Kdm2a) promoted macrophage M2 program by reprograming metabolic homeostasis through enhancing fatty acid uptake and lipolysis. Kdm2a increased H3K36me2 levels at the Pparg locus along with augmented chromatin accessibility and Stat6 recruitment, which rendered macrophages with preferential M2 polarization.

View Article and Find Full Text PDF

Despite past extensive studies, the mechanisms underlying pulmonary fibrosis (PF) still remain poorly understood. Here, we demonstrated that lungs originating from different types of patients with PF, including coronavirus disease 2019, systemic sclerosis-associated interstitial lung disease, and idiopathic PF, and from mice following bleomycin (BLM)-induced PF are characterized by the altered methyl-CpG-binding domain 2 (MBD2) expression in macrophages. Depletion of Mbd2 in macrophages protected mice against BLM-induced PF.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is the most common type of idiopathic interstitial pneumonia and has one of the poorest prognosis. However, the molecular mechanisms underlying IPF progression remain largely unknown. In this study, we determined that IL-24, an IL-20 subfamily cytokine member, was increased both in the serum of IPF patients and the bronchoalveolar lavage fluid (BALF) of mice following bleomycin (BLM)-induced pulmonary fibrosis.

View Article and Find Full Text PDF

Aims/hypothesis: High-mobility group box 1 (HMGB1), an evolutionarily conserved chromosomal protein, was rediscovered to be a 'danger signal' (alarmin) that alerts the immune system once released extracellularly. Therefore, it has been recognised contributing to the pathogenesis of autoimmune diabetes, but its exact impact on the initiation and progression of type 1 diabetes, as well as the related molecular mechanisms, are yet to be fully characterised.

Methods: In the current report, we employed NOD mice as a model to dissect the impact of blocking HMGB1 on the prevention, treatment and reversal of type 1 diabetes.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is characterized by the selective autoimmune destruction of the islet β cells, and macrophages play a significant role in this process. Small ubiquitin-like modification (SUMOylation) is an important posttranslational modification involved in T1D pathogenesis, but its function in macrophages remains unexplored. We presently developed and used macrophage-specific ubiquitin-conjugating enzyme E2 (Ubc9) knockout (LyzM-Cre-Ubc9, KO) mice to address the impact of SUMOylation on macrophage function in a T1D model.

View Article and Find Full Text PDF

Hematopoietic development occurs in the bone marrow, and this process begins with hematopoietic stem cells (HSCs). Ubc9 is a unique E2-conjugating enzyme required for SUMOylation, an evolutionarily conserved post-translational modification system. We herein show that a conditional Ubc9 deletion in the hematopoietic system caused decreased thymus weight and reduced lymphocyte to myeloid cell ratio.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved catabolic process that directs cytoplasmic proteins, organelles and microbes to lysosomes for degradation. It not only represents an essential cell-intrinsic mechanism to protect against internal and external stresses but also shapes both innate and adaptive immunity. Regulatory T cells (Tregs) are a developmentally and functionally distinct T cell subpopulation engaged in sustaining immunological self-tolerance and homeostasis.

View Article and Find Full Text PDF