Publications by authors named "Longjuan Qin"

Bone homeostasis is delicately orchestrated by osteoblasts and osteoclasts. Various pathological bone loss situations result from the overactivated osteoclastogenesis. Receptor activator of nuclear factor κB ligand (RANKL)-activated NF-κB and MAPK pathways is vital for osteoclastogenesis.

View Article and Find Full Text PDF

Magnolol is the active component of the traditional Chinese medicine Magnolia officinalis, and has antioxidant, anti‑inflammatory and anticancer activities, as well as an effect on bone metabolism in vitro. In the present study, it is reported that magnolol suppresses osteoclastogenesis in vivo and in vitro. Magnolol prevented ovariectomy‑induced bone loss and osteoclastogenesis in vivo, and decreased the serum levels of C‑terminal telopeptide of type 1 collagen, interleukin‑6, tumor necrosis factor (TNF)‑α and tartrate‑resistant acid phosphatase 5B.

View Article and Find Full Text PDF

Background/aims: Bone homeostasis is associated with the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Unbalanced bone homeostasis as a result of reduced osteogenesis or excessive osteoclastogenesis can lead to disorders such as osteoporosis, Paget's disease, and rheumatoid arthritis. Shikimic acid is a cyclohexanecarboxylic acid, reported to exhibit pharmacological properties including anti-inflammatory and antioxidant activities.

View Article and Find Full Text PDF

Bone metabolism is determined by a delicate balance between bone resorption by osteoclasts and bone formation by osteoblasts. The imbalance due to over-activated osteoclasts plays an important role in various diseases. Activation of NF-κB and MAPK signaling pathways by receptor activator of nuclear factor -κB ligand (RANKL) is vital for osteoclastogenesis.

View Article and Find Full Text PDF

Post-menopausal osteoporosis (PMOP) is a metabolic bone disorder characterized by low bone mass and micro-architectural deterioration of bone tissue. The over-activated osteoclastogenesis, which plays an important role in osteoporosis, has become an important therapeutic target. M54 was a bioactive derivative of the Chinese traditional herb matrine.

View Article and Find Full Text PDF

The SOST gene encodes sclerostin, a C-terminal cysteine knot-like domain containing key negative regulator of osteoblastic bone formation that inhibits LRP5/6-mediated canonical Wnt signaling. Numerous single nucleotide polymorphisms (SNPs) in the SOST locus are firmly associated with bone mineral density (BMD) and fracture in genome-wide association studies (GWAS) and candidate gene association studies. However, the validation and mechanistic elucidation of causal genetic variants, especially for SNPs located beyond the promoter-proximal region, remain largely unresolved.

View Article and Find Full Text PDF

Objectives: Genome-wide association studies (GWASs) have revealed many SNPs and genes associated with osteoporosis. However, influence of these SNPs and genes on the predisposition to osteoporosis is not fully understood. We aimed to identify osteoporosis GWASs-associated SNPs potentially influencing the binding affinity of transcription factors and miRNAs, and reveal enrichment signaling pathway and "hub" genes of osteoporosis GWAS-associated genes.

View Article and Find Full Text PDF

Sclerostin(SOST), mainly expressed in osteocytes, is a negative regulator of bone formation. Hormones PTH and E2 inhibit the expression of the SOST gene. Transcription factors Osterix, Runx2, and Mef2c promote the SOST expression, while Sirt1 negatively regulates the SOST expression.

View Article and Find Full Text PDF

Background: Asthma is a complex pulmonary inflammatory disease, which is characterized by airway hyperresponsiveness, variable airflow obstruction and inflammation in the airways. The majority of asthma is allergic asthma, which is a disease caused by type I hypersensitivity mediated by IgE. Exposures to a number of environmental chemicals are suspected to lead to asthma, one such pollutant is di-(2-ethylheyl) phthalate (DEHP).

View Article and Find Full Text PDF

Background: The great advances of nanomaterials have brought out broad important applications, but their possible nanotoxicity and risks have not been fully understood. It is confirmed that exposure of environmental particulate matter (PM), especially ultrafine PM, are responsible for many lung function impairment and exacerbation of pre-existing lung diseases. However, the adverse effect of nanoparticles on allergic asthma is seldom investigated and the mechanism remains undefined.

View Article and Find Full Text PDF

The alternative sigma factor Sigma B plays important roles in both virulence and stress tolerance in Listeria monocytogenes. It is now clear that there is a strong link between the virulence potential of Listeria monocytogenes and its ability to tolerate stress. Several studies have identified genes that play important roles in stress tolerance and virulence.

View Article and Find Full Text PDF