We study the shear flow of active filaments confined in a thin channel for extensile and contractile fibers. We apply the Ericksen-Leslie equations of liquid crystal flow with an activity source term. The dimensionless form of this system includes the Ericksen, activity, and Reynolds numbers, together with the aspect ratio of the channel, as the main driving parameters.
View Article and Find Full Text PDFIn this article, we study shear flow of active extensile filaments confined in a narrow channel. They behave as nematic liquid crystals that we assumed are governed by the Ericksen-Leslie equations of balance of linear and angular momentum. The addition of an activity source term in the Leslie stress captures the role of the biofuel prompting the dynamics.
View Article and Find Full Text PDFHere, we study the fluid dynamics of a pair of rigid helices rotating at a constant velocity, tethered at their bases, in a viscous fluid. Our computations use a regularized Stokeslet framework, both with and without a bounding plane, so we are able to discern precisely what flow features are unaccounted for in studies that ignore the surface from which the helices emanate. We examine how the spacing and phase difference between identical rotating helices affects their pumping ability, axial thrust, and power requirements.
View Article and Find Full Text PDFIntroduction: Only a limited number of tumor markers for breast cancer are currently available. Antibodies to tumor-associated proteins may expand the number of available tumor markers for breast cancer and may be used together in a serum profile to enhance sensitivity and specificity.
Methods: In the present study, we interrogated a breast cancer cDNA T7 phage library for tumor-associated proteins using biopan enrichment techniques with sera from normal individuals and from breast cancer patients.