Presently, demonstrates proficient co-fermentation of glucose and xylose, marking a significant advancement in second-generation fuel ethanol production. However, the presence of high concentrations of inhibitors in industrial lignocellulose hydrolysates and post-glucose effect caused by glucose consumption hinders severely impedes yeast robustness and xylose utilization for ethanol fermentation. Even worse, the antagonism between xylose utilization ability and strain robustness was observed, which proposes a difficult challenge in the production of second-generation fuel ethanol by .
View Article and Find Full Text PDFThe economical and efficient commercial production of second-generation bioethanol requires fermentation microorganisms capable of entirely and rapidly utilizing all sugars in lignocellulosic hydrolysates. In this study, we developed a recombinant strain, BLH510, through protoplast fusion and metabolic engineering to enhance its ability to co-ferment glucose, xylose, cellobiose, and xylooligosaccharides while tolerating various inhibitors commonly found in lignocellulosic hydrolysates. The parental strains, LF1 and BLN26, were selected for their superior glucose/xylose co-fermentation capabilities and inhibitor tolerance, respectively.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
How to illuminate dark matter has become the foremost open question in fundamental science nowadays, which is of great significance in understanding the laws of nature. Exploring exotic interactions beyond the standard model is one of the essential approaches to searching for dark matter particles. Although it has been explored in a variety of lab-scale and tabletop-scale setups over the past years, no such interactions have been observed, and improving the sensitivity significantly becomes of paramount importance, but challenging.
View Article and Find Full Text PDFHigh quality nanomechanical oscillators are promising platforms for quantum entanglement and quantum technology with phonons. Realizing coherent transfer of phonons between distant oscillators is a key challenge in phononic quantum information processing. Here, we report on the realization of robust unidirectional adiabatic pumping of phonons in a parametrically coupled nanomechanical system engineered as a one-dimensional phononic topological insulator.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
April 2022
Intrinsically disordered proteins (IDPs) are proteins or protein regions that fail to get folded into definite three-dimensional structures but participate in various biological processes and perform specific functions. Defying the traditional protein "sequence-structure-function" paradigm, they enrich the protein "structure-function" diversity. Ubiquitous in organisms, they show extreme hydrophilicity, charged amino acids, and highly repetitive amino acid sequences, with simple arrangement.
View Article and Find Full Text PDF