Publications by authors named "Longfei Wan"

Objective: This study aims to assess the effectiveness of early plastic surgery for deep hand burns by examining variables like VAS scores, wound healing time, and excellent hand function recovery rates.

Methods: A total of 130 patients with deep hand burns admitted to our hospital between January 2020 and October 2021 were enrolled in this study. They were randomly assigned to either a control group (n = 65, deferred reconstructive surgery) or an observation group (n = 65, early reconstructive surgery) using a random number table.

View Article and Find Full Text PDF

Cell-based therapeutics bring great hope in areas of unmet medical needs. Mesenchymal stem cells (MSCs) have been suggested to facilitate neovascularization mainly by paracrine action. Endothelial progenitor cells (EPCs) can migrate to ischemic sites and participate in angiogenesis.

View Article and Find Full Text PDF

Stem cell therapy is a promising treatment strategy for ischemic diseases. Mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) adhere to each other in the bone marrow cavity and in in vitro cultures. We have previously demonstrated that the adhesion between MSCs and EPCs is critical for MSC self‑renewal and their multi‑differentiation into osteoblasts and chondrocytes.

View Article and Find Full Text PDF

A normal bone marrow microenvironment plays a very important role in the normal functioning of hematopoietic stem cells. Once disturbed, this microenvironment can become favorable for the occurrence of blood disorders, cancers, and other diseases. Therefore, further studies on the bone marrow microenvironment should be performed to reveal regulatory and stem cell fate determination mechanisms and promote the development of bone marrow transplantation, tissue repair and regenerative medicine, and other fields.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) are attached to each other in the bone marrow (BM) cavity and in in vitro cultures, and this adhesion has important physiological significance. We demonstrated that cell proliferation could be promoted when MSCs were co-cultured with EPCs, which was beneficial to angiogenesis, tissue repair, and regeneration. The adhesion of MSCs and EPCs could promote the pluripotency of MSCs, particularly self-renewal and multi-differentiation to osteoblasts, chondrocytes, and adipocytes.

View Article and Find Full Text PDF