Publications by authors named "Longbo Luo"

Organic photovoltaics (OPVs) need to overcome limitations such as insufficient thermal stability to be commercialized. The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology, however, exhibiting limited applicability. Therefore, it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor-acceptor compatibilizers, or by introducing another third component.

View Article and Find Full Text PDF

Porous carbons have shown their potential in sodium-ion batteries (SIBs), but the undesirable initial Coulombic efficiency (ICE) and rate capability hinder their practical application. Herein, learning from nature, we report an efficient method for fabricating a carbon framework (CK) with delicate porous structural regulation by biomimetic mineralization-assisted self-activation. The abundant pores and defects of the CK anode can improve the ICE and rate performance of SIBs in ether-based electrolytes, whereas they are confined in carbonate ester-based electrolytes.

View Article and Find Full Text PDF
Article Synopsis
  • Elastomers are crucial in both traditional industries and emerging tech fields, but they often suffer damage from electricity, heat, and force during use.
  • There's a need for new elastomer materials that maintain strong mechanical properties while being self-healing and environmentally friendly, despite challenges achieving this balance.
  • A new type of elastomer, made from carbon hydrazide and polydimethylsiloxane, shows impressive self-healing efficiency, high stretchability, and recyclability, making it a promising material for applications like flexible strain sensors.
View Article and Find Full Text PDF

Structurally-colored photonic hydrogels which are fabricated by introducing hydrogels into thin films or photonic crystal structures are promising candidates for biosensing. Generally, the design of photonic hydrogel biosensors is based on the sensor-analyte interactions induced charge variation within the hydrogel matrix, or chemically grafting binding sites onto the polymer chains, to achieve significant volume change and color variation of the photonic hydrogel. However, relatively low anti-interference capability or complicated synthesis hinder the facile and low-cost fabrication of high-performance photonic hydrogel biosensors.

View Article and Find Full Text PDF

It is still a challenge to fabricate flexible pressure sensors that possess high sensitivity, ultralow detection limit, wide sensing range, and fast response for intelligent electronic devices. We here demonstrate superelastic and highly pressure-sensitive polyimide (PI)/reduced graphene oxide (rGO) aerogel sensors with unique honeycomb structure, which were designed and fabricated using a bidirectional freezing technique. This unique honeycomb structure with large aspect ratio is composed of aligned thin lamellar layers and interconnected bridges.

View Article and Find Full Text PDF

Aromatic macromolecules tend to form a compact conformation after physically adsorbed on graphene and it brings about great entropy loss for physisorption, due to the strong interaction between aromatic macromolecules and graphene. However, previous researches have validated the availability of aromatic macromolecules to stabilize graphene based on physisorption. In order to clarify the underlying mechanism of this physisorption process on graphene, a series of aromatic polyamide copolymers are used as models in this research.

View Article and Find Full Text PDF

Free radical polymerization is a mature method and can be used for preparing multifunctional hydrogels by simply changing the commercial monomers, but the harsh and time-consuming initiation conditions restrict its injectable ability, which further limits its application in the biomedical field. Though some catalysts can be used to accelerate the polymerization, their application is restrained by the biotoxicity. Hence, finding a biocompatible catalyzer for in situ free radical polymerization of hydrogels has a great prospect in biomedical application but is still challenging.

View Article and Find Full Text PDF

The fabrication of advanced graphene-based nanocomposites with high-performance polymers requires covalent modification of graphene with aromatic macromolecules. Herein, C-N coupling reactions between fluorinated graphene (FG) and aromatic polyamides containing the benzimidazole moiety are successfully achieved. The optimized conditions are presented based on the nucleophilic behavior of the C-N coupling reaction on graphene.

View Article and Find Full Text PDF

The rapid detection of heavy metal ions in wastewater has received significant attention in modern society. Herein, we report the exploration of benzimidazole-containing aramid fibers (B-ANF) for the naked-eye detection of heavy metal ions in aqueous solution. Firstly, B-ANF was prepared by hydroxylation from benzimidazole-containing aramid fiber.

View Article and Find Full Text PDF

Herein, we report the Friedel-Crafts reaction of fluorinated graphene with aryl molecules including methylbenzene, chlorobenzene and polystyrene. The reaction achieved the high-yield arylation functionalization of graphene under mild reaction conditions and extends the range of the Friedel-Crafts reaction to the field of two-dimensional materials.

View Article and Find Full Text PDF

Two sequence isomeric poly(amic acid)s (PAAs) are successfully synthesized from 3,3',4,4'-biphenyltetracarboxylic dianhydride and unsymmetrical 5(6)-amino-2-(4-aminobenzene) benzimidazole (PABZ). The syntheses are based on the site-selective reactivity of head/tail amino groups of PABZ and solubility differences of PABZ in good solvent (dimethyl sulfoxide, DMSO) and poor solvent (N-methyl-2-pyrrolidone, NMP). The proton nuclear magnetic resonance ( H-NMR) results reveal that the content of head tail-head tail (HTHT) bonding units in PAA-DMSO (PAA synthesized in DMSO) is 37%, while this content increases to 54% in PAA-NMP (PAA synthesized in NMP).

View Article and Find Full Text PDF

To obtain high-performance adsorbents that combine excellent adsorption ability, thermal stability, service life and recycling ability, polyimide (PI)/silica powders were prepared via a facile one-pot coprecipitation process. A benzimidazole unit was introduced into the PI backbone as the adsorption site. The benzimidazole unit induced more hydroxyls onto the silica, which provided hydrophilic sites for access by heavy metal ions.

View Article and Find Full Text PDF