Publications by authors named "Long-Xiang Sheng"

Background: Dysregulated activation of the inflammasome is involved in various human diseases including acute cerebral ischemia, multiple sclerosis and sepsis. Though many inflammasome inhibitors targeting NOD-like receptor protein 3 (NLRP3) have been designed and developed, none of the inhibitors are clinically available. Growing evidence suggests that targeting apoptosis-associated speck-like protein containing a CARD (ASC), the oligomerization of which is the key event for the assembly of inflammasome, may be another promising therapeutic strategy.

View Article and Find Full Text PDF

As one of the key injury incidents, tissue acidosis in the brain occurs very quickly within several minutes upon the onset of ischemic stroke. Glutamate, an excitatory amino acid inducing neuronal excitotoxicity, has been reported to trigger the decrease in neuronal intracellular pH (pHi) via modulating proton-related membrane transporters. However, there remains a lack of clarity on the possible role of glutamate in neuronal acidosis via regulating metabolism.

View Article and Find Full Text PDF

Following the publication of our paper (Zhang et al., 2020), it has come to our attention that we erroneously listed two funding sources unrelated to this study in the "ACKNOWLEDGEMENTS" section. Hereby, we wish to update the "ACKNOWLEDGEMENTS" section as a correction.

View Article and Find Full Text PDF

Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily using non-primate animal models that are genetically distant to humans, thus hindering the development of disease treatment. Here, we report that cynomolgus monkeys ( ) exposed to acute HH developed human-like HH syndrome involving severe brain injury and abnormal behavior.

View Article and Find Full Text PDF

Neuroinflammation has been well recognized as a key pathological event in acute glaucoma. The medical therapy of acute glaucoma mainly focuses on lowering intraocular pressure (IOP), while there are still scarce anti-inflammatory agents in the clinical treatment of acute glaucoma. Here we reported that β,3α,5α-trihydroxy-androst-6-one (sterone), a novel synthetic polyhydric steroid, blocked neuroinflammation mediated by microglia/macrophages and alleviated the loss of retinal ganglion cells (RGCs) caused by acute intraocular hypertension (AIH).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionf57sbh0jokdf3it76i7echnlj6rhuh8p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once