Publications by authors named "Long-Sheng Ma"

With the implementation of a fast-bandwidth servo, along with improved laser construction and associated better passive stability, we have achieved subfemtosecond relative timing jitter between two independent, actively synchronized, mode-locked Ti:sapphire lasers. Timing jitter of 0.58 fs is obtained with a 160-Hz observation bandwidth over several seconds.

View Article and Find Full Text PDF

Two octave-spanning optical-frequency combs (750-MHz comb spacing) are phase locked to a common continuous-wave laser diode. The measured instability of the heterodyne beat between the two combs demonstrates that the intrinsic fractional frequency noise of a comb is View Article and Find Full Text PDF

We report an improved mounting configuration for a passive optical cavity used for laser frequency stabilization. The associated reduction of the vibration sensitivity of the effective cavity length has led to a simple and compact reference cavity system for laser stabilization at the level of 1 Hz linewidth.

View Article and Find Full Text PDF

The first international comparison of femtosecond laser combs has been carried out at the International Bureau of Weights and Measures (BIPM). Three comb systems were involved: BIPM-C1 and BIPM-C2 from the BIPM and ECNU-C1 from the East China Normal University (ECNU). The agreement among the three combs was found to be on the subhertz level in the vicinity of 563 THz.

View Article and Find Full Text PDF

A femtosecond laser-based optical frequency synthesizer is referenced to an optical standard, and we use it to demonstrate the generation and control of the frequency of electromagnetic fields over 100 terahertz of bandwidth with fractional uncertainties approaching 1 part in 10(19). The reproducibility of this performance is verified by comparison of different types of femtosecond laser-based frequency synthesizers from three laboratories.

View Article and Find Full Text PDF

A frequency comparison was carried out between iodine-stabilized Nd:YAG lasers at 532 nm from the Bureau International des Poids et Mesures, the Centre for Metrology and Accreditation, the Czech Metrology Institute, and the Bureau National de Métrologie-Institut National de Métrologie. The frequency differences between lasers, as well as the frequency reproducibility of each system,were investigated. Pressure-, modulation-, and power-induced shifts were studied.

View Article and Find Full Text PDF