Sugarcane molasses is an ideal economical raw material for ethanol production because of its wide availability, low cost and nutrient content. However, benzoic acid compounds with toxic effects on yeast cells are commonly found in sugarcane molasses. At present, the molecular mechanism of the toxic effects of benzoic acid on Saccharomyces cerevisiae has not been elucidated.
View Article and Find Full Text PDFIn this study, a γPFD-SpyCatcher hydrogel scaffold with the capacity for spontaneous assembly was established. With a maximum loading capacity of a 1:1 molar ratio with SpyTag-enzymes, the immobilized proteins can not only rapidly provide pure enzymes but also exhibit improved thermal and pH stability. The results of the transmission electron microscopic analysis and the traits they present indicated that SpyCatcher promotes the aggregation of γPFD and the formation of hydrogels.
View Article and Find Full Text PDFPhenols are highly toxic chemicals that are extensively used in industry and produce large amounts of emissions. Notably, phenols released into the soil are highly persistent, causing long-term harm to human health and the environment. In this study, a gram-positive, aerobic, and rod-shaped bacterial strain, Z13, with efficient phenol degradation ability, was isolated from the soil of sugarcane fields.
View Article and Find Full Text PDFThe present study investigated the chemical composition of ethylacetate extracts from an endophytic actinomycete Streptomyces sp. A0916 and its host Polygonum cuspidatum. A comparative analysis of the antimicrobial and antioxidant properties of the extracts was also conducted.
View Article and Find Full Text PDFA bacterial isolate (SCU-B244T) was obtained in China from crickets (Teleogryllus occipitalis) living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea.
View Article and Find Full Text PDF