J Immunother Cancer
November 2023
Background: Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent and durable effects in B-cell malignancies. However, antigen loss or downregulation is a frequent cause of resistance. Here, we report development of a novel CAR T-cell therapy product to target CD79b, a pan B-cell antigen, widely expressed in most B-cell lymphomas.
View Article and Find Full Text PDFCoenzyme A (CoA) is an essential co-factor at the intersection of diverse metabolic pathways. Cellular CoA biosynthesis is regulated at the first committed step-phosphorylation of pantothenic acid-catalyzed by pantothenate kinases (PANK1,2,3 in humans, PANK3 being the most highly expressed). Despite the critical importance of CoA in metabolism, the differential roles of PANK isoforms remain poorly understood.
View Article and Find Full Text PDFImmunotherapies such as checkpoint blockade therapies are known to enhance anti-melanoma CD8 T cell immunity, but only a fraction of patients treated with these therapies achieve durable immune response and disease control. It may be that CD8 T cells need help from other immune cells to generate effective and long-lasting anti-tumor immunity or that CD8 T cells alone are insufficient for complete tumor regression and cure. Melanoma contains significant numbers of B cells; however, the role of B cells in anti-melanoma immunity is controversial.
View Article and Find Full Text PDFAntibodies that target immune checkpoint proteins such as programmed cell death protein 1, programmed death ligand 1, and cytotoxic T-lymphocyte-associated antigen 4 in human cancers have achieved impressive clinical success; however, a significant proportion of patients fail to respond to these treatments. Galectin-9 (Gal-9), a β-galactoside-binding protein, has been shown to induce T-cell death and facilitate immunosuppression in the tumor microenvironment by binding to immunomodulatory receptors such as T-cell immunoglobulin and mucin domain-containing molecule 3 and the innate immune receptor dectin-1, suggesting that it may have potential as a target for cancer immunotherapy. Here, we report the development of two novel Gal-9-neutralizing antibodies that specifically react with the N-carbohydrate-recognition domain of human Gal-9 with high affinity.
View Article and Find Full Text PDFIn this paper, the Asia Pacific Heart Rhythm Society (APHRS) sought to provide practice guidance on AF screening based on recent evidence, with specific considerations relevant to the Asia-Pacific region. A key recommendation is opportunistic screening for people aged ≥65 years (all countries), with systematic screening to be considered for people aged ≥75 years or who have additional risk factors (all countries).
View Article and Find Full Text PDFSince its inception in 1975, the hybridoma technology revolutionized science and medicine, facilitating discoveries in almost any field from the laboratory to the clinic. Many technological advancements have been developed since then, to create these "magical bullets." Phage and yeast display libraries expressing the variable heavy and light domains of antibodies, single B-cell cloning from immunized animals of different species including humans or in silico approaches, all have rendered a myriad of newly developed antibodies or improved design of existing ones.
View Article and Find Full Text PDFBackground: Although genetically engineered cells have been used to generate monoclonal antibodies (mAbs) against numerous proteins, no study has used them to generate mAbs against glycosylphosphatidylinositol (GPI)-anchored proteins. The GPI-linked protein Rae-1, an NKG2D ligand member, is responsible for interacting with immune surveillance cells. However, very few high-quality mAbs against Rae-1 are available for use in multiple analyses, including Western blotting, immunohistochemistry, and flow cytometry.
View Article and Find Full Text PDFCurrent cancer vaccines induce tumor-specific T cell responses without sustained tumor regression because immunosuppressive elements within the tumor induce exhaustion of effector T cells and infiltration of immune-suppressive regulatory T cells (Tregs). Therefore, much effort has been made to generate agonistic Abs targeting members of the TNFR superfamily, such as OX40, 4-1BB, and GITR, expressed on effector T cells and Tregs, to reinvigorate T cell effector function and block Treg-suppressive function. In this article, we describe the development of a panel of anti-human OX40 agonistic mouse mAbs that could promote effector CD4(+) and CD8(+) T cell proliferation, inhibit the induction of CD4(+) IL-10 -producing type 1 regulatory T cells, inhibit the expansion of ICOS(+)IL-10(+) Tregs, inhibit TGF-β-induced FOXP3 expression on naive CD4(+) T cells, and block natural Treg-suppressive function.
View Article and Find Full Text PDFThe Notch pathway regulates the development of many tissues and cell types and is involved in a variety of human diseases, making it an attractive potential therapeutic target. This promise has been limited by the absence of potent inhibitors or agonists that are specific for individual human Notch receptors (NOTCH1-4). Using an unbiased functional screening, we identified monoclonal antibodies that specifically inhibit or induce activating proteolytic cleavages in NOTCH3.
View Article and Find Full Text PDF