Proc Natl Acad Sci U S A
January 2025
A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.
View Article and Find Full Text PDFThe discovery of polar vortices and skyrmions in ferroelectric-dielectric superlattices [such as (PbTiO)/(SrTiO)] has ushered in an era of novel dipolar topologies and corresponding emergent phenomena. The key to creating such emergent features has generally been considered to be related to counterpoising strongly polar and non-polar materials thus creating the appropriate boundary conditions. This limits the utility these materials can have, however, by rendering (effectively) half of the structure unresponsive to applied stimuli.
View Article and Find Full Text PDFThe exotic polarization configurations of topologically protected dipolar textures have opened new avenues for realizing novel phenomena absent in traditional ferroelectric systems. While multiple recent studies have revealed a diverse array of emergent properties in such polar topologies, the details of their atomic and mesoscale structures remain incomplete. Through atomic- and meso-scale imaging techniques, the emergence of a macroscopic ferroelectric polarization along both principal axes of the vortex lattice while performing phase-field modeling to probe the atomic scale origins of these distinct polarization components is demonstrated.
View Article and Find Full Text PDFAchieving substantial electrostrain alongside a large effective piezoelectric strain coefficient (d*) in piezoelectric materials remains a formidable challenge for advanced actuator applications. Here, a straightforward approach to enhance these properties by strategically designing the domain structure and controlling the domain switching through the introduction of arrays of ordered {100}<100> dislocations is proposed. This dislocation engineering yields an intrinsic lock-in steady-state electrostrain of 0.
View Article and Find Full Text PDFThe extensive use of scarce, expensive, and toxic elements in high-performance metal alloys restricts their sustainable development. Here we propose a novel alternative alloying-element design strategy that combines physicochemical-factor screening, a "black-box" interpretative method based on SHapley Additive exPlanation analysis, and sensitivity analyses of elemental influence. A "white-box" model of alloy compositions and properties is therefore established that enables the rational selection of abundant elements and the efficient designs of alloys with substitution for scarce alloying elements.
View Article and Find Full Text PDFRe-poling of unexpected partially depoled piezoelectric materials conventionally needs to be first fully depoled through annealing above their Curie temperature to revive piezoelectric performances. Here, we investigated de-poling and re-poling of Pb(InNb)O-Pb(MgNb)O-PbTiO single crystals under electric fields at room temperature. We found that alternating current electric fields with amplitudes near the coercive field at low frequencies (<10 Hz) can be employed to successfully depolarize poled crystals at room temperature.
View Article and Find Full Text PDFCharge carrier doping usually reduces the resistance of a semiconductor or insulator, but was recently found to dramatically enhance the resistance in certain series of materials. This remarkable antidoping effect has been leveraged to realize synaptic memory trees in nanoscale hydrogenated perovskite nickelates, opening a new direction for neuromorphic computing. To understand these phenomena, we formulate a physical phase-field model of the antidoping effect based on its microscopic mechanism and simulate the voltage-driven resistance change in the prototypical system of hydrogenated perovskite nickelates.
View Article and Find Full Text PDFMott metal-insulator transitions possess electronic, magnetic, and structural degrees of freedom promising next-generation energy-efficient electronics. A previously unknown, hierarchically ordered, and anisotropic supercrystal state is reported and its intrinsic formation characterized in-situ during a Mott transition in a CaRuO thin film. Machine learning-assisted X-ray nanodiffraction together with cryogenic electron microscopy reveal multi-scale periodic domain formation at and below the film transition temperature (T ≈ 200-250 K) and a separate anisotropic spatial structure at and above T.
View Article and Find Full Text PDFDielectric capacitors offer great potential for advanced electronics due to their high power densities, but their energy density still needs to be further improved. High-entropy strategy has emerged as an effective method for improving energy storage performance, however, discovering new high-entropy systems within a high-dimensional composition space is a daunting challenge for traditional trial-and-error experiments. Here, based on phase-field simulations and limited experimental data, we propose a generative learning approach to accelerate the discovery of high-entropy dielectrics in a practically infinite exploration space of over 10 combinations.
View Article and Find Full Text PDFBases can promote keto-enol tautomerism, a prevalent form of prototropic tautomerism, and facilitate the ring opening of anhydride ring structures. The intrinsic chemical distinctions between these processes provide an opportunity to modulate these seemingly parallel reactions. However, this potential remains largely unexplored.
View Article and Find Full Text PDFPolar topological phases in oxide superlattices attracted significant attention due to their unique properties. Previous work revealed that a polar vortex and polar skyrmions exist in (PTO)/(STO) superlattices under different elastic constraints, i.e.
View Article and Find Full Text PDFThe drive toward non-von Neumann device architectures has led to an intense focus on insulator-to-metal (IMT) and the converse metal-to-insulator (MIT) transitions. Studies of electric field-driven IMT in the prototypical VO thin-film channel devices are largely focused on the electrical and elastic responses of the films, but the response of the corresponding TiO substrate is often overlooked, since it is nominally expected to be electrically passive and elastically rigid. Here, in-operando spatiotemporal imaging of the coupled elastodynamics using X-ray diffraction microscopy of a VO film channel device on TiO substrate reveals two new surprises.
View Article and Find Full Text PDFThe recent discovery of polar topological structures has opened the door for exciting physics and emergent properties. There is, however, little methodology to engineer stability and ordering in these systems, properties of interest for engineering emergent functionalities. Notably, when the surface area is extended to arbitrary thicknesses, the topological polar texture becomes unstable.
View Article and Find Full Text PDFDielectric capacitors, characterized by ultra-high power densities, are considered as fundamental energy storage components in electronic and electrical systems. However, synergistically improving energy densities and efficiencies remains a daunting challenge. Understanding the role of polarity heterogeneity at the nanoscale in determining polarization response is crucial to the domain engineering of high-performance dielectrics.
View Article and Find Full Text PDFDielectric capacitors are highly desired in modern electronic devices and power systems to store and recycle electric energy. However, achieving simultaneous high energy density and efficiency remains a challenge. Here, guided by theoretical and phase-field simulations, we are able to achieve a superior comprehensive property of ultrahigh efficiency of 90-94% and high energy density of 85-90 J cm remarkably in strontium titanate (SrTiO), a linear dielectric of a simple chemical composition, by manipulating local symmetry breaking through introducing Ti/O defects.
View Article and Find Full Text PDFPolar skyrmions in oxide heterostructures have recently attracted extensive interest due to their unique physical properties and potential applications. Here, we report the formation of the vortex lattice and the nanoscale polar skyrmion crystals with two-dimensional hexagonal symmetry in PbTiO/SrTrO (PTO/STO) superlattices. Under an increasing external field, the system transitions from a vortex lattice phase to hexagonal polar skyrmion crystals (PSkC).
View Article and Find Full Text PDFThere is tremendous interest in employing collective excitations of the lattice, spin, charge, and orbitals to tune strongly correlated electronic phenomena. We report such an effect in a ruthenate, CaRuO, where two phonons with strong electron-phonon coupling modulate the electronic pseudogap as well as mediate charge and spin density wave fluctuations. Combining temperature-dependent Raman spectroscopy with density functional theory reveals two phonons, B and B, that are strongly coupled to electrons and whose scattering intensities respectively dominate in the pseudogap versus the metallic phases.
View Article and Find Full Text PDFDomain switching is crucial for achieving desired functions in ferroic materials that are used in various applications. Fast control of domains at sub-nanosecond timescales remains a challenge despite its potential for high-speed operation in random-access memories, photonic, and nanoelectronic devices. Here, ultrafast laser excitation is shown to transiently melt and reconfigure ferroelectric stripe domains in multiferroic bismuth ferrite on a timescale faster than 100 picoseconds.
View Article and Find Full Text PDFRelaxor ferroelectrics (RFEs) are being actively investigated for energy-storage applications due to their large electric-field-induced polarization with slim hysteresis and fast energy charging-discharging capability. Here, a novel nanograin engineering approach based upon high kinetic energy deposition is reported, for mechanically inducing the RFE behavior in a normal ferroelectric Pb(Zr Ti )O (PZT), which results in simultaneous enhancement in the dielectric breakdown strength (E ) and polarization. Mechanically transformed relaxor thick films with 4 µm thickness exhibit an exceptional E of 540 MV m and reduced hysteresis with large unsaturated polarization (103.
View Article and Find Full Text PDFSolomon rings, upholding the symbol of wisdom with profound historical roots, were widely used as decorations in ancient architecture and clothing. However, it was only recently discovered that such topological structures can be formed by self-organization in biological/chemical molecules, liquid crystals, etc. Here, we report the observation of polar Solomon rings in a ferroelectric nanocrystal, which consist of two intertwined vortices and are mathematically equivalent to a [Formula: see text] link in topology.
View Article and Find Full Text PDF