Publications by authors named "Long Le-Quang"

TiO2 nanoparticles are successively functionalized with [Mn(κ2N1,N2-ttpy)(CO)3Br] as catalyst and [Ru(bpy)3]2+ as photosensitizer to yield RuII/TiO2/MnI. Under continuous irradiation at 470 nm and in the presence of a sacrificial electron donor, this triad reduces CO2 to HCOOH (TONmax = 27) with 100% selectivity.

View Article and Find Full Text PDF

[Cr(ttpy)2]3+ (ttpy = 4'-(4-methylphenyl)-2,2':6,2''-terpyridine) exhibits rich electrochemical and photophysical properties. Cyclic voltammetry performed in CH3CN shows in the cathodic part the presence of three one-electron reversible systems at -0.47, -0.

View Article and Find Full Text PDF

We propose in this work a stepwise approach to construct photoelectrodes. This takes advantage of the self-assembly interactions between thiol with a gold surface and terpyridine ligands with first-row transition metals. Here, a [Ru(bpy)] photosensitive center bearing a free terpyridine group has been used to construct two linear dyads on gold (Au/[Zn-Ru] and Au/[Co-Ru]).

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have emerged as an exciting class of porous materials that can be structurally designed by choosing particular components according to desired applications. Despite the wide interest in and many potential applications of MOFs, such as in gas storage, catalysis, sensing and drug delivery, electrical semiconductivity and its control is still rare. The use and fabrication of electronic devices with MOF-based components has not been widely explored, despite significant progress of these components made in recent years.

View Article and Find Full Text PDF