Publications by authors named "Long Duc Nghiem"

Novel hydrogel biocatalysts with immobilized lipase, stabilized by ionic liquids (ILs) of different hydrophobicity, were synthesized and evaluated. Variations of the time of immobilization and ratio of substrates during hydrogel synthesis were considered to obtain the most stable biocatalyst with the highest activity. Physicochemical characterization proved the success of the hydrogel synthesis and enzyme deposition on the surface of the support.

View Article and Find Full Text PDF

The skyrocketing demand and progressive technology have increased our dependency on electrical and electronic devices. However, the life span of these devices has been shortened because of rapid scientific expansions. Hence, massive volumes of electronic waste (e-waste) is generating day by day.

View Article and Find Full Text PDF

This study measured the environmental impacts from three same-size wastewater treatment systems, specifically activated sludge, a constructed wetland, and a high rate algal pond. Detailed data inventories were employed using SimaPro 9 software to calculate the entire consequences by ReCiPe 2016 and Greenhouse Gas Protocol method. The environmental outcomes caused by substance emissions and resource extraction are presented in several impact categories at the endpoint level.

View Article and Find Full Text PDF

Membrane distillation (MD) has been increasingly explored for treatment of various hyper saline waters, including lithium chloride (LiCl) solutions used in liquid desiccant air-conditioning (LDAC) systems. In this study, the regeneration of liquid desiccant LiCl solution by a pilot direct contact membrane distillation (DCMD) process is assessed using computer simulation. Unlike previous experimental investigations, the simulation allows to incorporate both temperature and concentration polarisation effects in the analysis of heat and mass transfer through the membrane, thus enabling the systematic assessment of the pilot DCMD regeneration of the LiCl solution.

View Article and Find Full Text PDF

High concentrations of antibiotics in swine wastewater pose potentially serious risks to the environment, human and animal health. Identifying the mechanism for removing antibiotics during the anaerobic treatment of swine wastewater is essential for reducing the serious damage they do to the environment. In this study, batch experiments were conducted to investigate the biosorption and biodegradation of tetracycline and sulfonamide antibiotics (TCs and SMs) in anaerobic processes.

View Article and Find Full Text PDF

Strategically important elements are those that are vital to advanced manufacturing, low carbon technologies and other growing industries. Ongoing depletion and supply risks to these elements are a critical concern, and thus, recovery of these elements from low-grade ores and brines has generated significant interest worldwide. Among the strategically important elements, this paper focuses on rare earth elements (REEs), the platinum-group metals and lithium due to their wide application in the advanced industrial economics.

View Article and Find Full Text PDF

Very little information on the occurrence and risk assessment of antibiotics in the aquatic environment is reported for Vietnam, where antibiotics are assumed to be omnipresent in urban canals and lakes at high concentrations due to the easy accessibility of antibiotics without doctor prescription. This study provides comprehensive analysis of the occurrence of 23 antibiotics in urban canals (To Lich and Kim Nguu) and lakes (West Lake, Hoan Kiem, and Yen So) in Hanoi, Vietnam. Of these 23 antibiotics, 18 were detected in urban canals at above 67.

View Article and Find Full Text PDF

Biofilm carriers play an important role in attached growth systems for wastewater treatment processes. This study systematically summarizes the traditional and novel biofilm carriers utilized in biofilm-based wastewater treatment technology. The advantages and disadvantages of traditional biofilm carriers are evaluated and discussed in light of basic property, biocompatibility and applicability.

View Article and Find Full Text PDF

This study aimed to assess the impacts of organic loading rate (OLR) (435-870 mgCOD/L·d) on nutrients recovery via a double-chamber microbial fuel cell (MFC) for treating domestic wastewater. Electricity generation was also explored at different OLRs, including power density and coulombic efficiency. Experimental results suggested the MFC could successfully treat municipal wastewater with over 90% of organics being removed at a wider range of OLR from 435 to 725 mgCOD/L·d.

View Article and Find Full Text PDF

This study aims to investigate the production of volatile fatty acids (VFAs) from low strength wastewater at various hydraulic retention time (HRT) and organic loading rate (OLR) in a continuous anaerobic membrane bioreactor (AnMBR) using glucose as carbon source. This experiment was performed without any selective inhibition of methanogens and the reactor pH was maintained at 7.0 ± 0.

View Article and Find Full Text PDF

Antibiotic wastewater has become a major concern due to the toxicity and recalcitrance of antibiotics. Anaerobic membrane bioreactors (AnMBRs) are considered alternative technology for treating antibiotic wastewater because of their advantages over the conventional anaerobic processes and aerobic MBRs. However, membrane fouling remains the most challenging issue in the AnMBRs' operation and this limits their application.

View Article and Find Full Text PDF

This study investigated the removal of micropollutants using polyurethane sponge as attached-growth carrier. Batch experiments demonstrated that micropollutants could adsorb to non-acclimatized sponge cubes to varying extents. Acclimatized sponge showed significantly enhanced removal of some less hydrophobic compounds (log D<2.

View Article and Find Full Text PDF

Micropollutants are emerging as a new challenge to the scientific community. This review provides a summary of the recent occurrence of micropollutants in the aquatic environment including sewage, surface water, groundwater and drinking water. The discharge of treated effluent from WWTPs is a major pathway for the introduction of micropollutants to surface water.

View Article and Find Full Text PDF

The oxidation of triclosan by commercial grade aqueous ferrate (Fe(VI)) was investigated and the reaction kinetics as a function of pH (7.0-10.0) were experimentally determined.

View Article and Find Full Text PDF

This study aims to provide conclusive evidence that information about water from alternative sources increases public acceptance. We conducted an experiment with 1000 Australian respondents asking them about their acceptance of recycled and desalinated water for a range of purposes under two conditions: 1) no information provided and 2) information about the production process provided. Results indicate that - both for desalinated and recycled water - the stated likelihood of use increases significantly if people are provided with information about the production process.

View Article and Find Full Text PDF

Experiments were conducted over approximately 7 months to investigate the effects of mixed liquor pH (between pH 5 and 9) on the removal of trace organics by a submerged MBR system. Removal efficiencies of ionisable trace organics (sulfamethoxazole, ibuprofen, ketoprofen, and diclofenac) were strongly pH dependent. However, the underlying removal mechanisms are different for ionisable and non-ionisable compounds.

View Article and Find Full Text PDF

This study investigated the effects of organic and colloidal fouling on the removal of a representative micropollutant sulphamethoxazole by two commercially available NF membranes. Alginate, bovine serum albumin and colloidal silica were selected as model foulants to simulate hydrophilic and hydrophobic organic fractions, and colloidal matter that are often found in treated effluent and surface water. Membrane fouling was related to the membrane and foulant characteristics and subsequently the separation behaviour of the micropollutant sulphamethoxazole under different solution pH.

View Article and Find Full Text PDF