The high incidence of oxidative stress in sows during late gestation and lactation affects mammary gland health, milk yield, and milk quality. Recently, we found that supplementing maternal diets with 1% taurine improved antioxidant capability and enhanced growth performance in offspring; however, the mechanisms underlying these are unknown. This study aimed to investigate the cytoprotective effects and the mechanism of taurine in mitigating oxidative stress in porcine mammary epithelial cells (PMECs).
View Article and Find Full Text PDFAn insufficient energy supply to intestinal epithelial cells decreases production performance in weaned piglets. Triglycerides are the main energy source for intestinal epithelial cells in piglets. The present study aimed to investigate the effects and mechanisms of valine supplementation on triglyceride synthesis in porcine intestinal epithelial (IPEC-J2) cells.
View Article and Find Full Text PDFMilk fat is a major source of energy that determines the growth of neonates. Recently, studies have shown that valine is closely related to lipid metabolism. Therefore, this study was designed to investigate the effects of dietary valine supplementation on milk fat synthesis using a pig model.
View Article and Find Full Text PDFBackground: Mammary gland development during late gestation in gilts is a major factor that alters the composition of colostrum and growth performance of piglets. Plasma valine is taken up and metabolized extensively by the mammary gland; however, the effects of valine on mammary gland development during late gestation are still unclear. Thirty primiparous gilts were divided into three treatment groups ( = 10) and received one of the three diets starting on day 75 of gestation until the day of farrowing.
View Article and Find Full Text PDFMammary gland development during late pregnancy in sows is a major factor affecting the composition of colostrum and milk and the pre-weaning growth of piglets, while valine is essential for protein and nitrogen metabolism in mammary gland of sow. However, the effects of valine and its underlying mechanism on mammary gland development during late pregnancy are still unclear. Here, we hypothesized that dosage of dietary valine during late pregnancy will affect protein synthesis of colostrum in gilts.
View Article and Find Full Text PDFBirth is one of the most important events of animal production agriculture, as newborns are abruptly forced to adapt to environmental and nutritional disruptions that can lead to oxidative damage and delay in growth. Taurine (Tau) is an important regulator of oxidative stress and possesses growth-enhancing properties. In the present study, we investigated the effects of dietary Tau supplementation in gilts during late gestation and lactation on the growth performance of piglets by assessing intestinal morphology and barrier function, and oxidative stress status.
View Article and Find Full Text PDFLactating mammary glands are among the most active lipogenic organs and provide a large percentage of bioactive lipids and calories for infant growth. The branched-chain amino acid (BCAA) valine is known to modulate fatty acids synthesis in adipose tissue; however, its effects on fat metabolism and the underlying mechanisms in mammary glands remain to be determined. Valine supplementation during late pregnancy significantly increased the contents of total milk fat, triglyceride, sphingomyelin, and polyunsaturated fatty acids in the colostrum of gilts.
View Article and Find Full Text PDFPrimordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90).
View Article and Find Full Text PDFWithin-litter uniformity in pigs is a major factor affecting piglet survival and growth performance. We know that Meishan (MS) gilts have higher piglet survival rate than Large White (LW) gilts because their foetal weight is less varied. To understand the molecular basis for placental nutritional transport during the late stages of gestation in LW and MS, we employed the isobaric tags for relative and absolute quantification (iTRAQ) method to investigate alterations in the placental proteomes of LW and MS gilts on gestational day 90.
View Article and Find Full Text PDFExcessive fat intake is a global health concern as women of childbearing age increasingly ingest a high fat diet. We therefore determined the association of a maternal high fat diet in pregnancy with offspring ovarian health during the gestation and postnatal female offspring in pig a model. Thirty-two Yorkshire gilts with similar bodyweights mated at the third estrus were randomly assigned to two nutrition levels of either a control (CON, crude fat: 7.
View Article and Find Full Text PDFIt has been suggested that maternal nutrition during gestation is involved in an offspring's intestinal development. The aim of this study was therefore to evaluate the effects of maternal energy on the growth and small intestine development of offspring. After mating, twenty gilts (Large White (LW) breeding, body weight (BW) at 135.
View Article and Find Full Text PDFThis experiment was designed to determine the effects of variations in dietary energy intake on reproductive performance and gene expression of luteal and endometrium tissues in Large White (LW) and Meishan (MS) gilts during early and middle pregnancy. After insemination, 32 LW gilts were assigned to high and low (HE and LE, 14.23 and 12.
View Article and Find Full Text PDFTime-dependent expression of functional proteins in fetal ovaries is important to understand the developmental process of the ovary. This study was carried out to enhance our understanding of the developmental process of porcine fetal ovaries and to better address the differences in fetal ovary development of local and foreign pigs. The objective of the present study is to test the expression of key proteins that regulate the growth and development of fetal ovaries in Meishan and Yorkshire porcine breeds by using proteomics technology.
View Article and Find Full Text PDF