Heavy metal transporters belonging to the P(1B)-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. Heavy metal transporters belonging to the P(1B)-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. In this study we investigated the properties of HvHMA1, which is a barley orthologue of Arabidopsis thaliana AtHMA1 localized to the chloroplast envelope.
View Article and Find Full Text PDFAlthough the role of Ca2+ influx channels in oxidative stress signaling and cross-tolerance in plants is well established, little is known about the role of active Ca2+ efflux systems in this process. In our recent paper, we reported Potato Virus X (PVX)-induced acquired resistance to oxidative stress in Nicotiana benthamiana and showed the critical role of plasma membrane Ca2+/H+ exchangers in this process. The current study continues this research.
View Article and Find Full Text PDFThis paper reports the phenomenon of acquired cross-tolerance to oxidative stress in plants and investigates the activity of specific Ca²+ transport systems mediating this phenomenon. Nicotiana benthamiana plants were infected with Potato virus X (PVX) and exposed to oxidative [either ultraviolet (UV-C) or H₂O₂] stress. Plant adaptive responses were assessed by the combined application of a range of electrophysiological (non-invasive microelectrode ion flux measurements), biochemical (Ca²+- and H+-ATPase activity), imaging (fluorescence lifetime imaging measurements of changes in intracellular Ca²+ concentrations), pharmacological and cytological transmission electrone microscopy techniques.
View Article and Find Full Text PDFTransmembrane nine (TM9) proteins are localized in the secretory pathway of eukaryotic cells and are involved in cell adhesion and phagocytosis. The mechanism by which TM9 proteins operate is, however, not well understood. Here we have utilized elemental profiling by inductively coupled plasma mass spectrometry (ICP-MS) to further investigate the physiological function of TM9 proteins.
View Article and Find Full Text PDFHeavy metal pumps (P1B-ATPases) are important for cellular heavy metal homeostasis. AtHMA4, an Arabidopsis thaliana heavy metal pump of importance for plant Zn(2+) nutrition, has an extended C-terminal domain containing 13 cysteine pairs and a terminal stretch of 11 histidines. Using a novel size-exclusion chromatography, inductively coupled plasma mass spectrometry approach we report that the C-terminal domain of AtHMA4 is a high affinity Zn(2+) and Cd(2+) chelator with capacity to bind 10 Zn(2+) ions per C terminus.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
March 2010
Plasma-membrane Ca(2+)-ATPases (PMCAs) are calcium pumps that expel Ca(2+) from eukaryotic cells to maintain overall Ca(2+) homoeostasis and to provide local control of intracellular Ca(2+) signalling. They are of major physiological importance, with different isoforms being essential, for example, for presynaptic and postsynaptic Ca(2+) regulation in neurons, feedback signalling in the heart and sperm motility. In the resting state, PMCAs are autoinhibited by binding of their C-terminal (in mammals) or N-terminal (in plants) tail to two major intracellular loops.
View Article and Find Full Text PDFJ Bioenerg Biomembr
December 2005
In the last few years, major progress has been made to elucidate the structure, function, and regulation of P-type plasma membrane H(+)-and Ca(2+)-ATPases. Even though a number of regulatory proteins have been identified, many pieces are still lacking in order to understand the complete regulatory mechanisms of these pumps. In plant plasma membrane H(+)- and Ca(2+)-ATPases, autoinhibitory domains are situated in the C- and N-terminal domains, respectively.
View Article and Find Full Text PDFIn plant Ca(2+) pumps belonging to the P(2B) subfamily of P-type ATPases, the N-terminal cytoplasmic domain is responsible for pump autoinhibition. Binding of calmodulin (CaM) to this region results in pump activation but the structural basis for CaM activation is still not clear. All residues in a putative CaM-binding domain (Arg(43) to Lys(68)) were mutagenized and the resulting recombinant proteins were studied with respect to CaM binding and the activation state.
View Article and Find Full Text PDFCa(2+) signals are thought to play important roles in plant growth and development, including key aspects of pollen tube growth and fertilization. The dynamics of a Ca(2+) signal are largely controlled by influx (through channels) and efflux (through pumps and antiporters). The Arabidopsis genome encodes 14 Ca(2+) pumps, 10 of which belong to a family of autoinhibited Ca(2+) ATPases (ACA) that are predicted to be activated by Ca(2+)/calmodulin.
View Article and Find Full Text PDF