Publications by authors named "Londiwe S Mbatha"

The recent advancements in messenger ribonucleic acid (mRNA) vaccine development have vastly enhanced their use as alternatives to conventional vaccines in the prevention of various infectious diseases and treatment of several types of cancers. This is mainly due to their remarkable ability to stimulate specific immune responses with minimal clinical side effects. This review gives a detailed overview of mRNA vaccines currently in use or at various stages of development, the recent advancements in mRNA vaccine development, and the challenges encountered in their development.

View Article and Find Full Text PDF

Cancer and COVID-19 have been deemed as world health concerns due to the millions of lives that they have claimed over the years. Extensive efforts have been made to develop sophisticated, site-specific, and safe strategies that can effectively diagnose, prevent, manage, and treat these diseases. These strategies involve the implementation of metal nanoparticles and metal oxides such as gold, silver, iron oxide, titanium oxide, zinc oxide, and copper oxide, formulated through nanotechnology as alternative anticancer or antiviral therapeutics or drug delivery systems.

View Article and Find Full Text PDF

Introduction: In recent years, plant-mediated synthesis of silver nanoparticles has evolved as a promising alternative to traditional synthesis methods. In addition to producing silver nanoparticles with diverse biomedical potential, the biosynthesis approach is known to be inexpensive, rapid, and environmentally friendly.

Objective: This study was aimed at synthesizing silver nanoparticles using ethanolic stem and root bark extracts of Khaya grandifoliola and highlighting the biomedical potential of the nanoparticles by evaluating their antioxidant, antidiabetic and anticholinesterase effects in vitro.

View Article and Find Full Text PDF

Messenger RNA (mRNA) is not an attractive candidate for gene therapy due to its instability and has therefore received little attention. Recent studies show the advantage of mRNA over DNA, especially in cancer immunotherapy and vaccine development. This study aimed to formulate folic-acid-(FA)-modified, poly-amidoamine-generation-5 (PAMAM G5D)-grafted gold nanoparticles (AuNPs) and to evaluate their cytotoxicity and transgene expression using the luciferase reporter gene (F-mRNA) in vitro.

View Article and Find Full Text PDF

Chlorotoxin (CTX) is a minute 4 kDa protein made up of 36 amino acid residues, commonly known for its binding affinity to chloride channels and matrix metalloproteinase-2 (MMP-2) of glioma tumors of the spine and brain. This property and the possibility of conjugating this peptide to nanoparticles have enabled its diverse use in various biotechnological and biomedical applications for cancer treatment, such as in tumor imaging and radiotherapy. Because of the fascinating biological properties CTX possesses, elucidating its mechanism of action may hold promise for the development of new and effective therapeutic drugs, as well as more sensitive and highly specific cancer-screening kits.

View Article and Find Full Text PDF

Use of exogenous small interfering RNA (siRNA) has shown potential in gene silencing. The need for target-specific siRNA delivery vehicles is crucial to successful gene silencing. This study is aimed at developing and evaluating the safety and efficiency of siRNA delivery using unmodified and folic acid (FA) modified poly(amidoamine) generation 5 (PAMAM G5D) functionalized gold nanoparticles (Au:G5D/Au:G5D:FA) in vitro.

View Article and Find Full Text PDF

The historical relationship between cancer and inflammation has long been evaluated, and dates back to the early work of Virchow (1863), where he hypothesised that chronic inflammation as a direct cause of tissue injury and infection, could actually promote tissue proliferation. At that period in time however, the exact mechanisms that mediated this relationship were little understood. Subsequent studies have since then demonstrated that chronic inflammation plays significant roles in microenvironments, mostly in the progression of tumours, probably, through over-secretion of proinflammatory cytokines and other immune-killing apparatus such as reactive oxygen species (ROS) which cause damage to normal cells leading to DNA damage and increased cellular mutation rates.

View Article and Find Full Text PDF

Gene therapy has opened doors for the treatment of genetic disorders such as cancer. However, it clinical application has been limited by safety-efficacy issues. Recently, dendritic stabilized metal nanoparticles have shown great potential as efficient non-viral modalities for plasmid DNA delivery.

View Article and Find Full Text PDF

Cancer and infectious diseases such as Ebola, HIV, tuberculosis, Zika, hepatitis, measles and human schistosomiasis are serious global health hazards. The increasing annual morbidities and mortalities of these diseases have been blamed on drug resistance and the inefficacy of available diagnostic tools, particularly those which are immunologically-based. Antibody-based tools rely solely on antibody production for diagnosis and for this reason they are the major cause of diagnostic delays.

View Article and Find Full Text PDF