The scaffold protein PEAK1 acts downstream of integrin adhesion complexes and the epidermal growth factor receptor, orchestrating signaling events that control cell proliferation and cytoskeletal remodeling. In this study we investigated the role of PEAK1 in colorectal carcinoma (CRC) progression using various in vitro and in vivo models to replicate the stepwise pathogenesis of CRC. While we observed a cell-type specific role for PEAK1 in the proliferation and in human CRC cell lines in vitro, our in vivo experiments using different CRC mouse models driven by loss of Apc, with or without oncogenic Kras or Pten loss suggest that PEAK1 does not significantly contribute to tumor formation in vivo.
View Article and Find Full Text PDFLow-grade inflammation is a hallmark of old age and a central driver of ageing-associated impairment and disease. Multiple factors can contribute to ageing-associated inflammation; however, the molecular pathways that transduce aberrant inflammatory signalling and their impact in natural ageing remain unclear. Here we show that the cGAS-STING signalling pathway, which mediates immune sensing of DNA, is a critical driver of chronic inflammation and functional decline during ageing.
View Article and Find Full Text PDFDNA interstrand crosslinks (ICLs) pose a major obstacle for DNA replication and transcription if left unrepaired. The cellular response to ICLs requires the coordination of various DNA repair mechanisms. Homologous recombination (HR) intermediates generated in response to ICLs, require efficient and timely conversion by structure-selective endonucleases.
View Article and Find Full Text PDFThe basement membrane (BM) around tumor lobes forms a barrier to prevent cancer cells from invading the surrounding tissue. Although myoepithelial cells are key producers of the healthy mammary epithelium BM, they are nearly absent in mammary tumors. To study the origin and dynamics of the BM, we developed and imaged a laminin beta1-Dendra2 mouse model.
View Article and Find Full Text PDFGlucose metabolism is dysregulated in Parkinson's disease (PD) causing a shift toward the metabolism of lipids. Carnitine palmitoyl-transferase 1A (CPT1A) regulates the key step in the metabolism of long-chain fatty acids. The aim of this study is to evaluate the effect of downregulating CPT1, either genetically with a Cpt1a P479L mutation or medicinally on PD using chronic rotenone mouse models using C57Bl/6J and Park2 knockout mice.
View Article and Find Full Text PDFProtein synthesis generally starts with a methionine that is removed during translation. However, cytoplasmic actin defies this rule because its synthesis involves noncanonical excision of the acetylated methionine by an unidentified enzyme after translation. Here, we identified C19orf54, named ACTMAP (actin maturation protease), as this enzyme.
View Article and Find Full Text PDFThe enzyme glutaminyl-peptide cyclotransferase-like protein (QPCTL) catalyzes the formation of pyroglutamate residues at the NH-terminus of proteins, thereby influencing their biological properties. A number of studies have implicated QPCTL in the regulation of chemokine stability. Furthermore, QPCTL activity has recently been shown to be critical for the formation of the high-affinity SIRPα binding site of the CD47 "don't-eat-me" protein.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease characterized by death of motor neurons. The etiology and pathogenesis remains elusive despite decades of intensive research. Herein, we report that dysregulated metabolism plays a central role in the SOD1 G93A mouse model mimicking ALS.
View Article and Find Full Text PDFSci Rep
September 2020
The etiology of CNS diseases including multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis remains elusive despite decades of research resulting in treatments with only symptomatic effects. In this study, we provide evidence that a metabolic shift from glucose to lipid is a key mechanism in neurodegeneration. We show that, by downregulating the metabolism of lipids through the key molecule carnitine palmitoyl transferase 1 (CPT1), it is possible to reverse or slowdown disease progression in experimental models of autoimmune encephalomyelitis-, SOD1 and rotenone models, mimicking these CNS diseases in humans.
View Article and Find Full Text PDFHuman mutations in carnitine palmitoyl transferase 1A (CPT1A) are correlated with a remarkably low prevalence of multiple sclerosis (MS) in Inuits (P479L) and Hutterites (G710E). To elucidate the role of CPT1A, we established a Cpt1a P479L mouse strain and evaluated its sensitivity to experimental autoimmune encephalomyelitis (EAE) induction. Since CPT1a is a key molecule in lipid metabolism, we compared the effects of a high-fat diet (HFD) and normal diet (ND) on disease progression.
View Article and Find Full Text PDFConditional alleles in genetically modified mice allow for the deletion of a gene of interest in a target tissue when combined with a tissue-specific Cre recombinase. A conditional allele is achieved by introducing LoxP sites around a critical exon, a gene, or a cluster of genes. Previously, conditional alleles were introduced in the mouse germline by classic gene targeting in embryonic stem cells, a challenging and time-consuming procedure.
View Article and Find Full Text PDFCurr Atheroscler Rep
November 2014
Oxidative stress due to an excess of reactive oxygen species (ROS) may play a role in the development and progression of cardiovascular disease (CVD). 8-hydroxy-2'-deoxyguanosine (8-OHdG) is a marker of oxidative DNA damage caused by ROS. This review aimed to assess the association between 8-OHdG and CVD by reviewing the literature.
View Article and Find Full Text PDF